Publication:
Periodicity and knots in delay models of population growth

dc.contributor.authorDang Vu Giangen_US
dc.contributor.authorYongwimon Lenburyen_US
dc.contributor.otherHanoi Institute of Mathematicsen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-07-12T02:24:46Z
dc.date.available2018-07-12T02:24:46Z
dc.date.issued2008-02-01en_US
dc.description.abstractRecently, we investigated the effect of delay on the asymptotic behavior of the model over(x, ̇) + x = f (x ({dot operator} - τ)) of population growth, when the nonlinearity f is a unimodal function. Now we prove that for large delay, there are several nonconstant (positive) periodic solutions. We also use knots theory to study periodic solutions with period 3 τ. Some of our results do not rely on the continuity of f and thus are applicable to wider range of biological problems in which the growth functions are piecewise continuous. © 2007 Elsevier Ltd. All rights reserved.en_US
dc.identifier.citationMathematical and Computer Modelling. Vol.47, No.3-4 (2008), 259-265en_US
dc.identifier.doi10.1016/j.mcm.2007.04.002en_US
dc.identifier.issn08957177en_US
dc.identifier.other2-s2.0-38149035164en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/19144
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=38149035164&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titlePeriodicity and knots in delay models of population growthen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=38149035164&origin=inwarden_US

Files

Collections