Publication:
Diabetes dose titration identification model

dc.contributor.authorRatchanee Kaewthaien_US
dc.contributor.authorSotarat Thammaboosadeeen_US
dc.contributor.authorSupaporn Kiattisinen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T02:49:15Z
dc.date.accessioned2019-03-14T08:01:29Z
dc.date.available2018-12-11T02:49:15Z
dc.date.available2019-03-14T08:01:29Z
dc.date.issued2016-02-04en_US
dc.description.abstract© 2015 IEEE. Diabetes is a chronic disease that requires continuous treatment throughout lifespan and increased risk opportunity of developing a number of serious health problems, which are high treatment cost. Admitted diabetes inpatients should receive the appropriate treatment in order to reduce rating of severe complications and premature death. This paper aims to develop the classification model for diabetic medication adjustment based on historical medical record of diabetic inpatients by applying three algorithms; Decision Tree, Naïve Bayes and Artificial neural network By comparison of the results of each method, Decision Tree is outperformed than others for Independent Dose Titration Model (IDT) dataset and Artificial Neural Network algorithm generated model with high accuracy and ROC Curve for Historical Dose Titration Model (HDT) dataset. The results of this paper could support the decision making in medication adjustment of diabetes inpatients, particularly type-2 diabetes inpatients.en_US
dc.identifier.citationBMEiCON 2015 - 8th Biomedical Engineering International Conference. (2016)en_US
dc.identifier.doi10.1109/BMEiCON.2015.7399557en_US
dc.identifier.other2-s2.0-84969219522en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/40621
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84969219522&origin=inwarden_US
dc.subjectEngineeringen_US
dc.titleDiabetes dose titration identification modelen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84969219522&origin=inwarden_US

Files

Collections