Publication:
Chloroplast Signaling Gates Thermotolerance in Arabidopsis

dc.contributor.authorPatrick J. Dickinsonen_US
dc.contributor.authorManoj Kumaren_US
dc.contributor.authorClaudia Martinhoen_US
dc.contributor.authorSeong Jeon Yooen_US
dc.contributor.authorHui Lanen_US
dc.contributor.authorGeorge Artavanisen_US
dc.contributor.authorVarodom Charoensawanen_US
dc.contributor.authorMark Aurel Schöttleren_US
dc.contributor.authorRalph Bocken_US
dc.contributor.authorKatja E. Jaegeren_US
dc.contributor.authorPhilip A. Wiggeen_US
dc.contributor.otherUniversity of Cambridgeen_US
dc.contributor.otherUniversity of Delhien_US
dc.contributor.otherMax Planck Institute of Molecular Plant Physiologyen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2019-08-23T10:37:15Z
dc.date.available2019-08-23T10:37:15Z
dc.date.issued2018-02-13en_US
dc.description.abstract© 2018 The Author(s) Temperature is a key environmental variable influencing plant growth and survival. Protection against high temperature stress in eukaryotes is coordinated by heat shock factors (HSFs), transcription factors that activate the expression of protective chaperones such as HEAT SHOCK PROTEIN 70 (HSP70); however, the pathway by which temperature is sensed and integrated with other environmental signals into adaptive responses is not well understood. Plants are exposed to considerable diurnal variation in temperature, and we have found that there is diurnal variation in thermotolerance in Arabidopsis thaliana, with maximal thermotolerance coinciding with higher HSP70 expression during the day. In a forward genetic screen, we identified a key role for the chloroplast in controlling this response, suggesting that light-induced chloroplast signaling plays a key role. Consistent with this, we are able to globally activate binding of HSFA1a to its targets by altering redox status in planta independently of a heat shock. Plants are most resilient to heat stress during the day, a response controlled by HSFA1 transcription factors activating heat shock genes. Dickinson et al. find that perturbations of chloroplast electron transport affect heat shock gene expression. They show that HSFA1 activity is gated by a light-dependent chloroplast signal.en_US
dc.identifier.citationCell Reports. Vol.22, No.7 (2018), 1657-1665en_US
dc.identifier.doi10.1016/j.celrep.2018.01.054en_US
dc.identifier.issn22111247en_US
dc.identifier.other2-s2.0-85042031235en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/45244
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042031235&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleChloroplast Signaling Gates Thermotolerance in Arabidopsisen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85042031235&origin=inwarden_US

Files

Collections