Publication:
Ni 2 +-activated glyoxalase i from Escherichia coli: Substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamily

dc.contributor.authorKadia Y. Mullingsen_US
dc.contributor.authorNicole Sukdeoen_US
dc.contributor.authorUthaiwan Suttisansaneeen_US
dc.contributor.authorYanhong Ranen_US
dc.contributor.authorJohn F. Honeken_US
dc.contributor.otherUniversity of Waterlooen_US
dc.contributor.otherGreenLight Biosciencesen_US
dc.contributor.otherThe University of British Columbiaen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherJinan Universityen_US
dc.date.accessioned2018-06-11T04:38:55Z
dc.date.available2018-06-11T04:38:55Z
dc.date.issued2012-03-01en_US
dc.description.abstractThe Escherichia coli glyoxalase system consists of the metalloenzymes glyoxalase I and glyoxalase II. Little is known regarding Ni 2 + -activated E. coli glyoxalase I substrate specificity, its thiol cofactor preference, the presence or absence of any substrate kinetic isotope effects on the enzyme mechanism, or whether glyoxalase I might catalyze additional reactions similar to those exhibited by related βαβ ββ structural superfamily members. The current investigation has shown that this two-enzyme system is capable of utilizing the thiol cofactors glutathionylspermidine and trypanothione, in addition to the known tripeptide glutathione, to convert substrate methylglyoxal to non-toxic d-lactate in the presence of Ni 2 + ion. E. coli glyoxalase I, reconstituted with either Ni 2 + or Cd 2 + , was observed to efficiently process deuterated and non-deuterated phenylglyoxal utilizing glutathione as cofactor. Interestingly, a substrate kinetic isotope effect for the Ni 2 + -substituted enzyme was not detected; however, the proton transfer step was observed to be partially rate limiting for the Cd 2 + -substituted enzyme. This is the first non-Zn 2 + -activated GlxI where a metal ion-dependent kinetic isotope effect using deuterium-labelled substrate has been observed. Attempts to detect a glutathione conjugation reaction with the antibiotic fosfomycin, similar to the reaction catalyzed by the related superfamily member FosA, were unsuccessful when utilizing the E. coli glyoxalase I E56A mutein. © 2011 Elsevier Inc. All rights reserved.en_US
dc.identifier.citationJournal of Inorganic Biochemistry. Vol.108, (2012), 133-140en_US
dc.identifier.doi10.1016/j.jinorgbio.2011.11.008en_US
dc.identifier.issn18733344en_US
dc.identifier.issn01620134en_US
dc.identifier.other2-s2.0-84858445695en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/13790
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84858445695&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.titleNi 2 +-activated glyoxalase i from Escherichia coli: Substrate specificity, kinetic isotope effects and evolution within the βαβββ superfamilyen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84858445695&origin=inwarden_US

Files

Collections