Publication:
Multinomial logit model building via treenet and association rules analysis: An application via a thyroid dataset

dc.contributor.authorPannapa Changpetchen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2022-08-04T08:24:55Z
dc.date.available2022-08-04T08:24:55Z
dc.date.issued2021-02-01en_US
dc.description.abstractA model-building framework is proposed that combines two data mining techniques, TreeNet and association rules analysis (ASA) with multinomial logit model building. TreeNet provides plots that play a key role in transforming quantitative variables into better forms for the model fit, whereas ASA is important in finding interactions (low-and high-order) among variables. With the implementation of TreeNet and ASA, new variables and interactions are generated, which serve as candidate predictors in building an optimal multinomial logit model. A real-life example in the context of health care is used to illustrate the major role of these newly generated variables and interactions in advancing multinomial logit modeling to a new level of performance. This method has an explanatory and predictive ability that cannot be achieved using existing methods.en_US
dc.identifier.citationSymmetry. Vol.13, No.2 (2021), 1-18en_US
dc.identifier.doi10.3390/sym13020287en_US
dc.identifier.issn20738994en_US
dc.identifier.other2-s2.0-85100813744en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76622
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100813744&origin=inwarden_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.subjectPhysics and Astronomyen_US
dc.titleMultinomial logit model building via treenet and association rules analysis: An application via a thyroid dataseten_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85100813744&origin=inwarden_US

Files

Collections