Publication:
On 2-primal modules

dc.contributor.authorNguyen T. Bacen_US
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorN. J. Groenewalden_US
dc.contributor.otherTon-Duc-Thang Universityen_US
dc.contributor.otherKent State Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNelson Mandela Universityen_US
dc.contributor.otherNguyen Tat Thanh Universityen_US
dc.contributor.otherUniversity of Economics and Business Administrationen_US
dc.date.accessioned2019-08-23T11:30:16Z
dc.date.available2019-08-23T11:30:16Z
dc.date.issued2018-08-01en_US
dc.description.abstract© 2018 by the Mathematical Association of Thailand. All rights reserved. In this paper, the concept of 2-primal modules is introduced. We show that the implications between rings which are reduced, IFP, symmetric and 2-primal are preserved when the notions are extended to modules. Like for rings, for 2-primal modules, prime submodules coincide with completely prime submodules. We prove that if M is a quasi-projective and finitely generated right R-module which is a self-generator, then M is 2-primal if and only if S =EndR (M) is 2-primal. Some properties of 2-primal modules are also investigated.en_US
dc.identifier.citationThai Journal of Mathematics. Vol.16, No.2 (2018), 415-425en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85052887931en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/46101
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052887931&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleOn 2-primal modulesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052887931&origin=inwarden_US

Files

Collections