Publication: On 2-primal modules
dc.contributor.author | Nguyen T. Bac | en_US |
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | N. J. Groenewald | en_US |
dc.contributor.other | Ton-Duc-Thang University | en_US |
dc.contributor.other | Kent State University | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Nelson Mandela University | en_US |
dc.contributor.other | Nguyen Tat Thanh University | en_US |
dc.contributor.other | University of Economics and Business Administration | en_US |
dc.date.accessioned | 2019-08-23T11:30:16Z | |
dc.date.available | 2019-08-23T11:30:16Z | |
dc.date.issued | 2018-08-01 | en_US |
dc.description.abstract | © 2018 by the Mathematical Association of Thailand. All rights reserved. In this paper, the concept of 2-primal modules is introduced. We show that the implications between rings which are reduced, IFP, symmetric and 2-primal are preserved when the notions are extended to modules. Like for rings, for 2-primal modules, prime submodules coincide with completely prime submodules. We prove that if M is a quasi-projective and finitely generated right R-module which is a self-generator, then M is 2-primal if and only if S =EndR (M) is 2-primal. Some properties of 2-primal modules are also investigated. | en_US |
dc.identifier.citation | Thai Journal of Mathematics. Vol.16, No.2 (2018), 415-425 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-85052887931 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/46101 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052887931&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | On 2-primal modules | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85052887931&origin=inward | en_US |