Publication:
A molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malaria

dc.contributor.authorErnest Diez Benaventeen_US
dc.contributor.authorMonica Camposen_US
dc.contributor.authorJody Phelanen_US
dc.contributor.authorDebbie Nolderen_US
dc.contributor.authorJamille G. Dombrowskien_US
dc.contributor.authorClaudio R.F. Marinhoen_US
dc.contributor.authorKanlaya Sriprawaten_US
dc.contributor.authorAimee R. Tayloren_US
dc.contributor.authorJames Watsonen_US
dc.contributor.authorCally Roperen_US
dc.contributor.authorFrancois Nostenen_US
dc.contributor.authorColin J. Sutherlanden_US
dc.contributor.authorSusana Campinoen_US
dc.contributor.authorTaane G. Clarken_US
dc.contributor.otherHarvard T.H. Chan School of Public Healthen_US
dc.contributor.otherLondon School of Hygiene & Tropical Medicineen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherUniversidade de Sao Paulo - USPen_US
dc.contributor.otherBroad Instituteen_US
dc.date.accessioned2020-03-26T04:28:45Z
dc.date.available2020-03-26T04:28:45Z
dc.date.issued2020-01-01en_US
dc.description.abstract© 2020 Public Library of Science. All rights reserved. Although Plasmodium vivax parasites are the predominant cause of malaria outside of sub- Saharan Africa, they not always prioritised by elimination programmes. P. vivax is resilient and poses challenges through its ability to re-emerge from dormancy in the human liver. With observed growing drug-resistance and the increasing reports of life-threatening infections, new tools to inform elimination efforts are needed. In order to halt transmission, we need to better understand the dynamics of transmission, the movement of parasites, and the reservoirs of infection in order to design targeted interventions. The use of molecular genetics and epidemiology for tracking and studying malaria parasite populations has been applied successfully in P. falciparum species and here we sought to develop a molecular genetic tool for P. vivax. By assembling the largest set of P. vivax whole genome sequences (n = 433) spanning 17 countries, and applying a machine learning approach, we created a 71 SNP barcode with high predictive ability to identify geographic origin (91.4%). Further, due to the inclusion of markers for within population variability, the barcode may also distinguish local transmission networks. By using P. vivax data from a low-transmission setting in Malaysia, we demonstrate the potential ability to infer outbreak events. By characterising the barcoding SNP genotypes in P. vivax DNA sourced from UK travellers (n = 132) to ten malaria endemic countries predominantly not used in the barcode construction, we correctly predicted the geographic region of infection origin. Overall, the 71 SNP barcode outperforms previously published genotyping methods and when rolled-out within new portable platforms, is likely to be an invaluable tool for informing targeted interventions towards elimination of this resilient human malaria.en_US
dc.identifier.citationPLoS Genetics. Vol.16, No.2 (2020)en_US
dc.identifier.doi10.1371/journal.pgen.1008576en_US
dc.identifier.issn15537404en_US
dc.identifier.issn15537390en_US
dc.identifier.other2-s2.0-85081155285en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/53542
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081155285&origin=inwarden_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectMedicineen_US
dc.titleA molecular barcode to inform the geographical origin and transmission dynamics of Plasmodium vivax malariaen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081155285&origin=inwarden_US

Files

Collections