Publication:
Convergence in Hausdorff content of Padé-Faber approximants and its applications

dc.contributor.authorWaraporn Chonlapapen_US
dc.contributor.authorNattapong Bosuwanen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-01-27T09:15:32Z
dc.date.available2020-01-27T09:15:32Z
dc.date.issued2019-01-01en_US
dc.description.abstract© 2019 by the Mathematical Association of Thailand. All rights reserved. A convergence in Hausdorff content of Padé-Faber approximants (re-cently introduced in [1]) on some certain sequences is proved. As applications of this result, we give an alternate proof of a Montessus de Ballore type theorem for these Padé-Faber approximants and a proof of a convergence of Padé-Faber approximants in the maximal canonical domain in which the approximated function can be continued to a meromorphic function.en_US
dc.identifier.citationThai Journal of Mathematics. Vol.17, (2019), 272-287en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85063571296en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/51234
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063571296&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleConvergence in Hausdorff content of Padé-Faber approximants and its applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063571296&origin=inwarden_US

Files

Collections