Publication: Convergence in Hausdorff content of Padé-Faber approximants and its applications
dc.contributor.author | Waraporn Chonlapap | en_US |
dc.contributor.author | Nattapong Bosuwan | en_US |
dc.contributor.other | South Carolina Commission on Higher Education | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.date.accessioned | 2020-01-27T09:15:32Z | |
dc.date.available | 2020-01-27T09:15:32Z | |
dc.date.issued | 2019-01-01 | en_US |
dc.description.abstract | © 2019 by the Mathematical Association of Thailand. All rights reserved. A convergence in Hausdorff content of Padé-Faber approximants (re-cently introduced in [1]) on some certain sequences is proved. As applications of this result, we give an alternate proof of a Montessus de Ballore type theorem for these Padé-Faber approximants and a proof of a convergence of Padé-Faber approximants in the maximal canonical domain in which the approximated function can be continued to a meromorphic function. | en_US |
dc.identifier.citation | Thai Journal of Mathematics. Vol.17, (2019), 272-287 | en_US |
dc.identifier.issn | 16860209 | en_US |
dc.identifier.other | 2-s2.0-85063571296 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/51234 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063571296&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | Convergence in Hausdorff content of Padé-Faber approximants and its applications | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063571296&origin=inward | en_US |