Publication:
Towards reproducible computational drug discovery

dc.contributor.authorNalini Schaduangraten_US
dc.contributor.authorSamuel Lampaen_US
dc.contributor.authorSaw Simeonen_US
dc.contributor.authorMatthew Paul Gleesonen_US
dc.contributor.authorOla Spjuthen_US
dc.contributor.authorChanin Nantasenamaten_US
dc.contributor.otherKasetsart Universityen_US
dc.contributor.otherKing Mongkut's Institute of Technology Ladkrabangen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUppsala Universiteten_US
dc.date.accessioned2020-03-26T04:39:14Z
dc.date.available2020-03-26T04:39:14Z
dc.date.issued2020-01-28en_US
dc.description.abstract© 2020 The Author(s). The reproducibility of experiments has been a long standing impediment for further scientific progress. Computational methods have been instrumental in drug discovery efforts owing to its multifaceted utilization for data collection, pre-processing, analysis and inference. This article provides an in-depth coverage on the reproducibility of computational drug discovery. This review explores the following topics: (1) the current state-of-the-art on reproducible research, (2) research documentation (e.g. electronic laboratory notebook, Jupyter notebook, etc.), (3) science of reproducible research (i.e. comparison and contrast with related concepts as replicability, reusability and reliability), (4) model development in computational drug discovery, (5) computational issues on model development and deployment, (6) use case scenarios for streamlining the computational drug discovery protocol. In computational disciplines, it has become common practice to share data and programming codes used for numerical calculations as to not only facilitate reproducibility, but also to foster collaborations (i.e. to drive the project further by introducing new ideas, growing the data, augmenting the code, etc.). It is therefore inevitable that the field of computational drug design would adopt an open approach towards the collection, curation and sharing of data/code.en_US
dc.identifier.citationJournal of Cheminformatics. Vol.12, No.1 (2020)en_US
dc.identifier.doi10.1186/s13321-020-0408-xen_US
dc.identifier.issn17582946en_US
dc.identifier.other2-s2.0-85078669876en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/53642
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078669876&origin=inwarden_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.subjectSocial Sciencesen_US
dc.titleTowards reproducible computational drug discoveryen_US
dc.typeReviewen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85078669876&origin=inwarden_US

Files

Collections