Publication:
Image analysis and machine learning for detecting malaria

dc.contributor.authorMahdieh Poostchien_US
dc.contributor.authorKamolrat Silamuten_US
dc.contributor.authorRichard J. Maudeen_US
dc.contributor.authorStefan Jaegeren_US
dc.contributor.authorGeorge Thomaen_US
dc.contributor.otherHarvard School of Public Healthen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherNational Library of Medicineen_US
dc.date.accessioned2019-08-28T06:16:49Z
dc.date.available2019-08-28T06:16:49Z
dc.date.issued2018-04-01en_US
dc.description.abstract© 2018 Malaria remains a major burden on global health, with roughly 200 million cases worldwide and more than 400,000 deaths per year. Besides biomedical research and political efforts, modern information technology is playing a key role in many attempts at fighting the disease. One of the barriers toward a successful mortality reduction has been inadequate malaria diagnosis in particular. To improve diagnosis, image analysis software and machine learning methods have been used to quantify parasitemia in microscopic blood slides. This article gives an overview of these techniques and discusses the current developments in image analysis and machine learning for microscopic malaria diagnosis. We organize the different approaches published in the literature according to the techniques used for imaging, image preprocessing, parasite detection and cell segmentation, feature computation, and automatic cell classification. Readers will find the different techniques listed in tables, with the relevant articles cited next to them, for both thin and thick blood smear images. We also discussed the latest developments in sections devoted to deep learning and smartphone technology for future malaria diagnosis.en_US
dc.identifier.citationTranslational Research. Vol.194, (2018), 36-55en_US
dc.identifier.doi10.1016/j.trsl.2017.12.004en_US
dc.identifier.issn18781810en_US
dc.identifier.issn19315244en_US
dc.identifier.other2-s2.0-85041927182en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/46805
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85041927182&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleImage analysis and machine learning for detecting malariaen_US
dc.typeReviewen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85041927182&origin=inwarden_US

Files

Collections