Publication:
Convergence theorems from monotone hybrid methods for an infinitely countable family of Lipschitz asymptotically quasi-nonexpansive mappings

dc.contributor.authorWatcharaporn Cholamjiaken_US
dc.contributor.authorSuthep Suantaien_US
dc.contributor.otherChiang Mai Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-09-24T08:57:23Z
dc.date.available2018-09-24T08:57:23Z
dc.date.issued2010-08-01en_US
dc.description.abstractIn this paper, we prove a weak convergence theorem for the modified Mann iteration process for a uniformly Lipschitzian and asymptotically quasi-nonexpansive mapping in a uniformly convex Banach space. We also introduce two new kinds of monotone hybrid methods and obtain strong convergence theorems for an infinitely countable family of uniformly Lipschitzian and asymptotically quasi-nonexpansive mappings in a Hilbert space. The results of this paper improve on and extend corresponding ones announced by many authors. © 2009.en_US
dc.identifier.citationNonlinear Analysis: Hybrid Systems. Vol.4, No.3 (2010), 524-530en_US
dc.identifier.doi10.1016/j.nahs.2009.12.003en_US
dc.identifier.issn1751570Xen_US
dc.identifier.other2-s2.0-77955589557en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/29013
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77955589557&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleConvergence theorems from monotone hybrid methods for an infinitely countable family of Lipschitz asymptotically quasi-nonexpansive mappingsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77955589557&origin=inwarden_US

Files

Collections