Publication:
Destabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem products

dc.contributor.authorFausta Omodeo-Salèen_US
dc.contributor.authorAnna Mottien_US
dc.contributor.authorArjen Dondorpen_US
dc.contributor.authorNicholas J. Whiteen_US
dc.contributor.authorDonatella Taramellien_US
dc.contributor.otherUniversita degli Studi di Milanoen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherChurchill Hospitalen_US
dc.contributor.otherFacoltà di Farmaciaen_US
dc.date.accessioned2018-06-21T08:29:02Z
dc.date.available2018-06-21T08:29:02Z
dc.date.issued2005-04-01en_US
dc.description.abstractIn falciparum malaria, both infected and uninfected red cells have structural and functional alterations. To investigate the mechanisms of these modifications, we studied the effects of two Plasmodium falciparum haem products (haematin and malaria pigment in the synthetic form beta-haematin) on isolated human red blood cells (RBCs) and purified RBC ghosts. A dose- and time-dependent incorporation of haematin into RBC ghosts and intact cells was observed, which was in proportion to the extent of haematin- induced haemolysis. RBCs preincubated with haematin were more sensitive to haemolysis induced by hypotonic shock, low pH, H2O2 or haematin itself. Haemolysis was not related to membrane lipid peroxidation and only partially to oxidation of protein sulphydryl groups and it could not be prevented by scavengers of lipid peroxidation or hydroperoxide groups. N-acetylcysteine partly protected the oxidation of SH groups and significantly reduced haemolysis. In contrast, beta-haematin was neither haemolytic nor oxidative towards protein sulphydryl groups. Beta-haematin did destabilise the RBC membrane, but to a lesser extent than haematin, inducing increased susceptibility to lysis caused by hypotonic medium, H2O2 or haematin. This study suggests that the destabilising effect of haematin and, to a much less extent, beta-haematin on the RBC membrane does not result from oxidative damage of membrane lipids but from direct binding or incorporation which may affect the reciprocal interactions between the membrane and cytoskeleton proteins. These changes could contribute to the reduced red cell deformability associated with severe malaria. © Blackwell Munksgaard 2005.en_US
dc.identifier.citationEuropean Journal of Haematology. Vol.74, No.4 (2005), 324-332en_US
dc.identifier.doi10.1111/j.1600-0609.2004.00352.xen_US
dc.identifier.issn09024441en_US
dc.identifier.other2-s2.0-16244365509en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/17019
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=16244365509&origin=inwarden_US
dc.subjectMedicineen_US
dc.titleDestabilisation and subsequent lysis of human erythrocytes induced by Plasmodium falciparum haem productsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=16244365509&origin=inwarden_US

Files

Collections