Publication:
Combining complementary neural network and error-correcting output codes for multiclass classification problems

dc.contributor.authorJairaj Promraken_US
dc.contributor.authorPawalai Kraipeerapunen_US
dc.contributor.authorSomkid Amornsamankulen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherRamkhamhaeng Universityen_US
dc.contributor.otherCentre of Excellence in Mathematics CHEen_US
dc.date.accessioned2018-05-03T08:09:28Z
dc.date.available2018-05-03T08:09:28Z
dc.date.issued2011-05-23en_US
dc.description.abstractThis paper presented an innovative method, combining Complementary Neural Networks (CMTNN) and Error-Correcting Output Codes (ECOC), to solve multiclass classification problem. CMTNN consist of truth neural network and falsity neural network created based on truth and falsity information, respectively. In the experiment, we deal with feed-forward backpropagation neural networks, trained using 10 fold cross-validation method and classified based on minimum distance. The proposed approach has been tested with three benchmark problems: balance, vehicle and nursery from the UCI machine learning repository. We found that our approach provides better performance compared to the existing techniques considering on either CMTNN or ECOC.en_US
dc.identifier.citation10th WSEAS International Conference on Applied Computer and Applied Computational Science, ACACOS'11. (2011), 49-54en_US
dc.identifier.other2-s2.0-79956134289en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/11802
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79956134289&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleCombining complementary neural network and error-correcting output codes for multiclass classification problemsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=79956134289&origin=inwarden_US

Files

Collections