Publication: Schatten's theorems on functionally defined schur algebras
dc.contributor.author | Pachara Chaisuriya | en_US |
dc.contributor.author | Sing Cheong Ong | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Central Michigan University | en_US |
dc.date.accessioned | 2018-06-21T08:18:34Z | |
dc.date.available | 2018-06-21T08:18:34Z | |
dc.date.issued | 2005-09-13 | en_US |
dc.description.abstract | For each triple of positive numbers p, q, r ≥ 1 and each commutative C* -algebra ℬ with identity 1 and the set s(ℬ) of states on ℬ, the set ℓr (ℬ) of all matrices A = [ajk] over ℬ such that φ [A[r]]:= [φ( ajkr)] defines a bounded operator from ℓp to ℓq for all φ ε s(ℬ) is shown to be a Banach algebra under the Schur product operation, and the norm ∥A∥ = ∥ A ∥p,q,r = sup{∥φ[A[r]]∥1/r : φ ε s(ℬ)}. Schatten's theorems about the dual of the compact operators, the trace-class operators, and the decomposition of the dual of the algebra of all bounded operators on a Hilbert space are extended to the ℓr (ℬ) setting. Copyright © 2005 Hindawi Publishing Corporation. | en_US |
dc.identifier.citation | International Journal of Mathematics and Mathematical Sciences. Vol.2005, No.14 (2005), 2175-2193 | en_US |
dc.identifier.doi | 10.1155/IJMMS.2005.2175 | en_US |
dc.identifier.issn | 01611712 | en_US |
dc.identifier.other | 2-s2.0-27944509232 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/16643 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27944509232&origin=inward | en_US |
dc.subject | Mathematics | en_US |
dc.title | Schatten's theorems on functionally defined schur algebras | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27944509232&origin=inward | en_US |