Publication:
Schatten's theorems on functionally defined schur algebras

dc.contributor.authorPachara Chaisuriyaen_US
dc.contributor.authorSing Cheong Ongen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherCentral Michigan Universityen_US
dc.date.accessioned2018-06-21T08:18:34Z
dc.date.available2018-06-21T08:18:34Z
dc.date.issued2005-09-13en_US
dc.description.abstractFor each triple of positive numbers p, q, r ≥ 1 and each commutative C* -algebra ℬ with identity 1 and the set s(ℬ) of states on ℬ, the set ℓr (ℬ) of all matrices A = [ajk] over ℬ such that φ [A[r]]:= [φ( ajkr)] defines a bounded operator from ℓp to ℓq for all φ ε s(ℬ) is shown to be a Banach algebra under the Schur product operation, and the norm ∥A∥ = ∥ A ∥p,q,r = sup{∥φ[A[r]]∥1/r : φ ε s(ℬ)}. Schatten's theorems about the dual of the compact operators, the trace-class operators, and the decomposition of the dual of the algebra of all bounded operators on a Hilbert space are extended to the ℓr (ℬ) setting. Copyright © 2005 Hindawi Publishing Corporation.en_US
dc.identifier.citationInternational Journal of Mathematics and Mathematical Sciences. Vol.2005, No.14 (2005), 2175-2193en_US
dc.identifier.doi10.1155/IJMMS.2005.2175en_US
dc.identifier.issn01611712en_US
dc.identifier.other2-s2.0-27944509232en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/16643
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27944509232&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleSchatten's theorems on functionally defined schur algebrasen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=27944509232&origin=inwarden_US

Files

Collections