Publication:
Reconstructing transmission trees for communicable diseases using densely sampled genetic data

dc.contributor.authorColin J. Worbyen_US
dc.contributor.authorPhilip D. O’Neillen_US
dc.contributor.authorTheodore Kypraiosen_US
dc.contributor.authorJulie V. Robothamen_US
dc.contributor.authorDaniela De Angelisen_US
dc.contributor.authorEdward J.P. Cartwrighten_US
dc.contributor.authorSharon J. Peacocken_US
dc.contributor.authorBen S. Cooperen_US
dc.contributor.otherUniversity of Nottinghamen_US
dc.contributor.otherHarvard School of Public Healthen_US
dc.contributor.otherPublic Health Englanden_US
dc.contributor.otherMRC Biostatistics Uniten_US
dc.contributor.otherThe Ipswich Hospital NHS Trusten_US
dc.contributor.otherUniversity of Cambridgeen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T02:42:34Z
dc.date.accessioned2019-03-14T08:04:41Z
dc.date.available2018-12-11T02:42:34Z
dc.date.available2019-03-14T08:04:41Z
dc.date.issued2016-03-01en_US
dc.description.abstract© Institute of Mathematical Statistics, 2016. Whole genome sequencing of pathogens from multiple hosts in an epidemic offers the potential to investigate who infected whom with unparalleled resolution, potentially yielding important insights into disease dynamics and the impact of control measures. We considered disease outbreaks in a setting with dense genomic sampling, and formulated stochastic epidemic models to investigate person-to-person transmission, based on observed genomic and epidemiological data.We constructed models in which the genetic distance between sampled genotypes depends on the epidemiological relationship between the hosts. A data-augmented Markov chain Monte Carlo algorithm was used to sample over the transmission trees, providing a posterior probability for any given transmission route. We investigated the predictive performance of our methodology using simulated data, demonstrating high sensitivity and specificity, particularly for rapidly mutating pathogens with low transmissibility. We then analyzed data collected during an outbreak of methicillin-resistant Staphylococcus aureus in a hospital, identifying probable transmission routes and estimating epidemiological parameters. Our approach overcomes limitations of previous methods, providing a framework with the flexibility to allow for unobserved infection times, multiple indepen-dent introductions of the pathogen and within-host genetic diversity, as well as allowing forward simulation.en_US
dc.identifier.citationAnnals of Applied Statistics. Vol.10, No.1 (2016), 395-417en_US
dc.identifier.doi10.1214/15-AOAS898en_US
dc.identifier.issn19417330en_US
dc.identifier.issn19326157en_US
dc.identifier.other2-s2.0-84975127301en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/43623
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84975127301&origin=inwarden_US
dc.subjectDecision Sciencesen_US
dc.subjectMathematicsen_US
dc.titleReconstructing transmission trees for communicable diseases using densely sampled genetic dataen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84975127301&origin=inwarden_US

Files

Collections