Publication:
i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation

dc.contributor.authorMd Mehedi Hasanen_US
dc.contributor.authorBalachandran Manavalanen_US
dc.contributor.authorWatshara Shoombuatongen_US
dc.contributor.authorMst Shamima Khatunen_US
dc.contributor.authorHiroyuki Kurataen_US
dc.contributor.otherKyushu Institute of Technologyen_US
dc.contributor.otherAjou University, School of Medicineen_US
dc.contributor.otherJapan Society for the Promotion of Scienceen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-03-26T04:28:15Z
dc.date.available2020-03-26T04:28:15Z
dc.date.issued2020-01-01en_US
dc.description.abstract© 2020, Springer Nature B.V. DNA N6-methyladenine (6 mA) is one of the most vital epigenetic modifications and involved in controlling the various gene expression levels. With the avalanche of DNA sequences generated in numerous databases, the accurate identification of 6 mA plays an essential role for understanding molecular mechanisms. Because the experimental approaches are time-consuming and costly, it is desirable to develop a computation model for rapidly and accurately identifying 6 mA. To the best of our knowledge, we first proposed a computational model named i6mA-Fuse to predict 6 mA sites from the Rosaceae genomes, especially in Rosa chinensis and Fragaria vesca. We implemented the five encoding schemes, i.e., mononucleotide binary, dinucleotide binary, k-space spectral nucleotide, k-mer, and electron–ion interaction pseudo potential compositions, to build the five, single-encoding random forest (RF) models. The i6mA-Fuse uses a linear regression model to combine the predicted probability scores of the five, single encoding-based RF models. The resultant species-specific i6mA-Fuse achieved remarkably high performances with AUCs of 0.982 and 0.978 and with MCCs of 0.869 and 0.858 on the independent datasets of Rosa chinensis and Fragaria vesca, respectively. In the F. vesca-specific i6mA-Fuse, the MBE and EIIP contributed to 75% and 25% of the total prediction; in the R. chinensis-specific i6mA-Fuse, Kmer, MBE, and EIIP contribute to 15%, 65%, and 20% of the total prediction. To assist high-throughput prediction for DNA 6 mA identification, the i6mA-Fuse is publicly accessible at https://kurata14.bio.kyutech.ac.jp/i6mA-Fuse/.en_US
dc.identifier.citationPlant Molecular Biology. (2020)en_US
dc.identifier.doi10.1007/s11103-020-00988-yen_US
dc.identifier.issn15735028en_US
dc.identifier.issn01674412en_US
dc.identifier.other2-s2.0-85080933360en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/53536
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85080933360&origin=inwarden_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titlei6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representationen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85080933360&origin=inwarden_US

Files

Collections