Publication:
Bayesian Predictive Inference for Zero-Inflated Poisson (ZIP) Distribution with Applications

dc.contributor.authorSuntaree Unhapipaten_US
dc.contributor.authorMontip Tiensuwanen_US
dc.contributor.authorNabendu Palen_US
dc.contributor.otherUniversity of Louisiana at Lafayetteen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherCommission on Higher Educationen_US
dc.date.accessioned2019-08-23T10:43:17Z
dc.date.available2019-08-23T10:43:17Z
dc.date.issued2018-01-02en_US
dc.description.abstract© 2018 Taylor & Francis Group, LLC. SYNOPTIC ABSTRACT: Count data (over time or space) that has an unusually large number of zeros cannot be modelled by the usual Poisson distribution. Typically, a better fit to such data is provided by a two parameter zero-inflated Poisson (ZIP) distribution. This work deals with Bayesian predictive inference under the ZIP model where various types of prior distributions have been considered. The applicability and usefulness of our proposed Bayesian techniques under the ZIP model have been demonstrated by four examples with real-life datasets, ranging from public health to natural disasters to vehicle accidents.en_US
dc.identifier.citationAmerican Journal of Mathematical and Management Sciences. Vol.37, No.1 (2018), 66-79en_US
dc.identifier.doi10.1080/01966324.2017.1380545en_US
dc.identifier.issn01966324en_US
dc.identifier.other2-s2.0-85031810113en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/45381
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85031810113&origin=inwarden_US
dc.subjectBusiness, Management and Accountingen_US
dc.subjectMathematicsen_US
dc.titleBayesian Predictive Inference for Zero-Inflated Poisson (ZIP) Distribution with Applicationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85031810113&origin=inwarden_US

Files

Collections