Publication:
Performance of a fully‐automated system on a WHO malaria microscopy evaluation slide set

dc.contributor.authorMatthew P. Horningen_US
dc.contributor.authorCharles B. Delahunten_US
dc.contributor.authorChristine M. Bachmanen_US
dc.contributor.authorJennifer Luchavezen_US
dc.contributor.authorChristian Lunaen_US
dc.contributor.authorLiming Huen_US
dc.contributor.authorMayoore S. Jaiswalen_US
dc.contributor.authorClay M. Thompsonen_US
dc.contributor.authorSourabh Kulhareen_US
dc.contributor.authorSamantha Jankoen_US
dc.contributor.authorBenjamin K. Wilsonen_US
dc.contributor.authorTravis Ostbyeen_US
dc.contributor.authorMartha Mehanianen_US
dc.contributor.authorRoman Gebrehiwoten_US
dc.contributor.authorGrace Yunen_US
dc.contributor.authorDavid Bellen_US
dc.contributor.authorStephane Prouxen_US
dc.contributor.authorJane Y. Carteren_US
dc.contributor.authorWellington Oyiboen_US
dc.contributor.authorDionicia Gamboaen_US
dc.contributor.authorMehul Dhordaen_US
dc.contributor.authorRanitha Vongpromeken_US
dc.contributor.authorPeter L. Chiodinien_US
dc.contributor.authorBernhards Ogutuen_US
dc.contributor.authorEarl G. Longen_US
dc.contributor.authorKyaw Tunen_US
dc.contributor.authorThomas R. Burkoten_US
dc.contributor.authorKen Lilleyen_US
dc.contributor.authorCourosh Mehanianen_US
dc.contributor.otherMahidol Oxford Tropical Medicine Research Uniten_US
dc.contributor.otherGokilaen_US
dc.contributor.otherUniversidad Peruana Cayetano Herediaen_US
dc.contributor.otherKenya Medical Research Instituteen_US
dc.contributor.otherAmref Health Africaen_US
dc.contributor.otherLondon School of Hygiene & Tropical Medicineen_US
dc.contributor.otherCenters for Disease Control and Preventionen_US
dc.contributor.otherJames Cook Universityen_US
dc.contributor.otherUniversity of Washingtonen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversity of Lagosen_US
dc.contributor.otherArizona State Universityen_US
dc.contributor.otherAustralian Defence Force Malaria and Infectious Disease Instituteen_US
dc.contributor.otherIndependent Consultanten_US
dc.contributor.otherAsia Regional Centreen_US
dc.contributor.otherDefence Services Medical Academyen_US
dc.contributor.otherCreative Creek, LLCen_US
dc.contributor.otherIntellectual Ventures Global Good Funden_US
dc.contributor.otherIntellectual Venturesen_US
dc.date.accessioned2022-08-04T08:46:47Z
dc.date.available2022-08-04T08:46:47Z
dc.date.issued2021-12-01en_US
dc.description.abstractBackground: Manual microscopy remains a widely-used tool for malaria diagnosis and clinical studies, but it has inconsistent quality in the field due to variability in training and field practices. Automated diagnostic systems based on machine learning hold promise to improve quality and reproducibility of field microscopy. The World Health Organization (WHO) has designed a 55-slide set (WHO 55) for their External Competence Assessment of Malaria Microscopists (ECAMM) programme, which can also serve as a valuable benchmark for automated systems. The performance of a fully-automated malaria diagnostic system, EasyScan GO, on a WHO 55 slide set was evaluated. Methods: The WHO 55 slide set is designed to evaluate microscopist competence in three areas of malaria diagnosis using Giemsa-stained blood films, focused on crucial field needs: malaria parasite detection, malaria parasite species identification (ID), and malaria parasite quantitation. The EasyScan GO is a fully-automated system that combines scanning of Giemsa-stained blood films with assessment algorithms to deliver malaria diagnoses. This system was tested on a WHO 55 slide set. Results: The EasyScan GO achieved 94.3 % detection accuracy, 82.9 % species ID accuracy, and 50 % quantitation accuracy, corresponding to WHO microscopy competence Levels 1, 2, and 1, respectively. This is, to our knowledge, the best performance of a fully-automated system on a WHO 55 set. Conclusions: EasyScan GO’s expert ratings in detection and quantitation on the WHO 55 slide set point towards its potential value in drug efficacy use-cases, as well as in some case management situations with less stringent species ID needs. Improved runtime may enable use in general case management settings.en_US
dc.identifier.citationMalaria Journal. Vol.20, No.1 (2021)en_US
dc.identifier.doi10.1186/s12936-021-03631-3en_US
dc.identifier.issn14752875en_US
dc.identifier.other2-s2.0-85101771435en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/77185
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101771435&origin=inwarden_US
dc.subjectImmunology and Microbiologyen_US
dc.subjectMedicineen_US
dc.titlePerformance of a fully‐automated system on a WHO malaria microscopy evaluation slide seten_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85101771435&origin=inwarden_US

Files

Collections