Publication: Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis
Issued Date
2012-07-01
Resource Type
ISSN
10986596
00664804
00664804
Other identifier(s)
2-s2.0-84862586167
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Antimicrobial Agents and Chemotherapy. Vol.56, No.7 (2012), 3917-3922
Suggested Citation
Lorena Diaz, Pattarachai Kiratisin, Rodrigo E. Mendes, Diana Panesso, Kavindra V. Singh, Cesar A. Arias Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis. Antimicrobial Agents and Chemotherapy. Vol.56, No.7 (2012), 3917-3922. doi:10.1128/AAC.00419-12 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/14755
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Transferable plasmid-mediated resistance to linezolid due to cfr in a human clinical isolate of Enterococcus faecalis
Abstract
Nonmutational resistance to linezolid is due to the presence of cfr, which encodes a methyltransferase responsible for methylation of A2503 in the 23S rRNA. The cfr gene was first described in animal isolates of staphylococci, and more recently, it has been identified in Staphylococcus aureus from human clinical infections, including in an outbreak of methicillin-resistant S. aureus. In enterococci, cfr has been described in an animal isolate of Enterococcus faecalis from China. Here, we report an isolate of linezolid-resistant E. faecalis (603-50427X) recovered from a patient in Thailand who received prolonged therapy with the antibiotic for the treatment of atypical mycobacterial disease. The isolate lacked mutations in the genes coding for 23S rRNA and L3 and L4 ribosomal proteins and belonged to the multilocus sequence type (MLST) 16 (ST16), which is commonly found in enterococcal isolates from animal sources. Resistance to linezolid was associated with the presence of cfr on an ∼97-kb transferable plasmid. The cfr gene environment exhibited DNA sequences similar to those of other cfr-carrying plasmids previously identified in staphylococci (nucleotide identity, 99 to 100%). The cfr-carrying plasmid was transferable by conjugation to a laboratory strain of E. faecalis (OG1RF) but not to Enterococcus faecium or S. aureus. The cfr gene was flanked by IS256-like sequences both upstream and downstream. This is the first characterization of the potential horizontal transferability of the cfr gene from a human linezolid-resistant isolate of E. faecalis. Copyright © 2012, American Society for Microbiology. All Rights Reserved.