Publication:
Interacting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysis

dc.contributor.authorMarcin J. Skwarken_US
dc.contributor.authorNicholas J. Croucheren_US
dc.contributor.authorSanteri Puranenen_US
dc.contributor.authorClaire Chewapreechaen_US
dc.contributor.authorMaiju Pesonenen_US
dc.contributor.authorYing Ying Xuen_US
dc.contributor.authorPaul Turneren_US
dc.contributor.authorSimon R. Harrisen_US
dc.contributor.authorStephen B. Beresen_US
dc.contributor.authorJames M. Musseren_US
dc.contributor.authorJulian Parkhillen_US
dc.contributor.authorStephen D. Bentleyen_US
dc.contributor.authorErik Aurellen_US
dc.contributor.authorJukka Coranderen_US
dc.contributor.otherVanderbilt Universityen_US
dc.contributor.otherImperial College Londonen_US
dc.contributor.otherAalto Universityen_US
dc.contributor.otherUniversity of Cambridgeen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNuffield Department of Clinical Medicineen_US
dc.contributor.otherWellcome Trust Sanger Instituteen_US
dc.contributor.otherMethodist Hospital Houstonen_US
dc.contributor.otherWeill Cornell Medical Collegeen_US
dc.contributor.otherThe Royal Institute of Technology (KTH)en_US
dc.contributor.otherInstitute of Theoretical Physics Chinese Academy of Sciencesen_US
dc.contributor.otherHelsingin Yliopistoen_US
dc.contributor.otherUniversitetet i Osloen_US
dc.date.accessioned2018-12-21T06:33:21Z
dc.date.accessioned2019-03-14T08:02:30Z
dc.date.available2018-12-21T06:33:21Z
dc.date.available2019-03-14T08:02:30Z
dc.date.issued2017-02-01en_US
dc.description.abstract© 2017 Skwark et al. Recent advances in the scale and diversity of population genomic datasets for bacteria now provide the potential for genome-wide patterns of co-evolution to be studied at the resolution of individual bases. Here we describe a new statistical method, genomeDCA, which uses recent advances in computational structural biology to identify the polymorphic loci under the strongest co-evolutionary pressures. We apply genomeDCA to two large population data sets representing the major human pathogens Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A Streptococcus). For pneumococcus we identified 5,199 putative epistatic interactions between 1,936 sites. Over three-quarters of the links were between sites within the pbp2x, pbp1a and pbp2b genes, the sequences of which are critical in determining non-susceptibility to beta-lactam antibiotics. A network-based analysis found these genes were also coupled to that encoding dihydrofolate reductase, changes to which underlie trimethoprim resistance. Distinct from these antibiotic resistance genes, a large network component of 384 protein coding sequences encompassed many genes critical in basic cellular functions, while another distinct component included genes associated with virulence. The group A Streptococcus (GAS) data set population represents a clonal population with relatively little genetic variation and a high level of linkage disequilibrium across the genome. Despite this, we were able to pinpoint two RNA pseudouridine synthases, which were each strongly linked to a separate set of loci across the chromosome, representing biologically plausible targets of co-selection. The population genomic analysis method applied here identifies statistically significantly co-evolving locus pairs, potentially arising from fitness selection interdependence reflecting underlying protein-protein interactions, or genes whose product activities contribute to the same phenotype. This discovery approach greatly enhances the future potential of epistasis analysis for systems biology, and can complement genome-wide association studies as a means of formulating hypotheses for targeted experimental work.en_US
dc.identifier.citationPLoS Genetics. Vol.13, No.2 (2017)en_US
dc.identifier.doi10.1371/journal.pgen.1006508en_US
dc.identifier.issn15537404en_US
dc.identifier.issn15537390en_US
dc.identifier.other2-s2.0-85014119857en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/41534
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85014119857&origin=inwarden_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleInteracting networks of resistance, virulence and core machinery genes identified by genome-wide epistasis analysisen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85014119857&origin=inwarden_US

Files

Collections