Publication: Comparison of ROS-Based Monocular Visual SLAM Methods: DSO, LDSO, ORB-SLAM2 and DynaSLAM
dc.contributor.author | Eldar Mingachev | en_US |
dc.contributor.author | Roman Lavrenov | en_US |
dc.contributor.author | Tatyana Tsoy | en_US |
dc.contributor.author | Fumitoshi Matsuno | en_US |
dc.contributor.author | Mikhail Svinin | en_US |
dc.contributor.author | Jackrit Suthakorn | en_US |
dc.contributor.author | Evgeni Magid | en_US |
dc.contributor.other | Ritsumeikan University Biwako-Kusatsu Campus | en_US |
dc.contributor.other | Kazan Federal University | en_US |
dc.contributor.other | Mahidol University | en_US |
dc.contributor.other | Kyoto University | en_US |
dc.date.accessioned | 2020-11-18T08:54:19Z | |
dc.date.available | 2020-11-18T08:54:19Z | |
dc.date.issued | 2020-01-01 | en_US |
dc.description.abstract | © 2020, Springer Nature Switzerland AG. Stable and robust path planning of a ground mobile robot requires a combination of accuracy and low latency in its state estimation. Yet, state estimation algorithms should provide these under computational and power constraints of a robot embedded hardware. The presented study offers a comparative analysis of four cutting edge publicly available within robot operating system (ROS) monocular simultaneous localization and mapping methods: DSO, LDSO, ORB-SLAM2, and DynaSLAM. The analysis considers pose estimation accuracy (alignment, absolute trajectory, and relative pose root mean square error) and trajectory precision of the four methods at TUM-Mono and EuRoC datasets. | en_US |
dc.identifier.citation | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol.12336 LNAI, (2020), 222-233 | en_US |
dc.identifier.doi | 10.1007/978-3-030-60337-3_22 | en_US |
dc.identifier.issn | 16113349 | en_US |
dc.identifier.issn | 03029743 | en_US |
dc.identifier.other | 2-s2.0-85092904826 | en_US |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/59952 | |
dc.rights | Mahidol University | en_US |
dc.rights.holder | SCOPUS | en_US |
dc.source.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092904826&origin=inward | en_US |
dc.subject | Computer Science | en_US |
dc.subject | Mathematics | en_US |
dc.title | Comparison of ROS-Based Monocular Visual SLAM Methods: DSO, LDSO, ORB-SLAM2 and DynaSLAM | en_US |
dc.type | Conference Paper | en_US |
dspace.entity.type | Publication | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85092904826&origin=inward | en_US |