Publication:
Estimating marginal probabilities of n-grams for recurrent neural language models

dc.contributor.authorThanapon Noraseten_US
dc.contributor.authorDoug Downeyen_US
dc.contributor.authorLidong Bingen_US
dc.contributor.otherTencenten_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherNorthwestern Universityen_US
dc.date.accessioned2020-03-26T04:41:17Z
dc.date.available2020-03-26T04:41:17Z
dc.date.issued2020-01-01en_US
dc.description.abstract© 2018 Association for Computational Linguistics Recurrent neural network language models (RNNLMs) are the current standard-bearer for statistical language modeling. However, RNNLMs only estimate probabilities for complete sequences of text, whereas some applications require context-independent phrase probabilities instead. In this paper, we study how to compute an RNNLM's marginal probability: the probability that the model assigns to a short sequence of text when the preceding context is not known. We introduce a simple method of altering the RNNLM training to make the model more accurate at marginal estimation. Our experiments demonstrate that the technique is effective compared to baselines including the traditional RNNLM probability and an importance sampling approach. Finally, we show how we can use the marginal estimation to improve an RNNLM by training the marginals to match n-gram probabilities from a larger corpus.en_US
dc.identifier.citationProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018. (2020), 2930-2935en_US
dc.identifier.other2-s2.0-85081737682en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/53650
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081737682&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleEstimating marginal probabilities of n-grams for recurrent neural language modelsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081737682&origin=inwarden_US

Files

Collections