Publication:
Classification of audio and video traffic over HTTP protocol

dc.contributor.authorSamruay Kaoprakhonen_US
dc.contributor.authorVasaka Visoottivisethen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-09-13T06:33:23Z
dc.date.available2018-09-13T06:33:23Z
dc.date.issued2009-12-01en_US
dc.description.abstractA widely use of the Internet introduces various online services such as online game, radio online, music online, TV online and video clips, which communicate over Hyper Text Transfer Protocol (HTTP). In this work, we aim to classify an audio and a video traffic from normal web traffic to reduce the misuse of bandwidth consumption. We propose a classification method based on flow information. Our classification use a combination of keyword matching technique and statistical behavior profiles. Keywords are pre-defined by observing from both audio and video traffic. Behavior profiles consist of three attributes, which are the average received packet size, a ratio of number of server-client packets, and the flow duration. Each attribute have an independent threshold of mean (μ) and standard deviation (σ). The experimental results show that our method can classify an audio traffic, a video traffic and normal web traffic with a high precision and recall. ©2009 IEEE.en_US
dc.identifier.citation2009 9th International Symposium on Communications and Information Technology, ISCIT 2009. (2009), 1534-1539en_US
dc.identifier.doi10.1109/ISCIT.2009.5341026en_US
dc.identifier.other2-s2.0-74549127546en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/27454
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=74549127546&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleClassification of audio and video traffic over HTTP protocolen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=74549127546&origin=inwarden_US

Files

Collections