Publication:
Generalized solutions of the third-order Cauchy-Euler equation in the space of right-sided distributions via laplace transform

dc.contributor.authorSeksan Jhanthanamen_US
dc.contributor.authorKamsing Nonlaoponen_US
dc.contributor.authorSomsak Orankitjaroenen_US
dc.contributor.otherKhon Kaen Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2020-01-27T09:13:58Z
dc.date.available2020-01-27T09:13:58Z
dc.date.issued2019-04-01en_US
dc.description.abstract© 2019 by the authors. Using the Laplace transform technique, we investigate the generalized solutions of the third-order Cauchy-Euler equation of the form t3y'''(t) + at2y''(t) + by'(t) + cy(t) = 0, where a, b, and c ∈ Z and t ∈ ℝ. We find that the types of solutions in the space of right-sided distributions, either distributional solutions or weak solutions, depend on the values of a, b, and c. At the end of the paper, we give some examples showing the types of solutions. Our work improves the result of Kananthai (Distribution solutions of the third order Euler equation. Southeast Asian Bull. Math. 1999, 23, 627-631).en_US
dc.identifier.citationMathematics. Vol.7, No.4 (2019)en_US
dc.identifier.doi10.3390/math7040376en_US
dc.identifier.issn22277390en_US
dc.identifier.other2-s2.0-85066453382en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/51225
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066453382&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleGeneralized solutions of the third-order Cauchy-Euler equation in the space of right-sided distributions via laplace transformen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85066453382&origin=inwarden_US

Files

Collections