Publication: Terphenyl derivatives and drimane – Phathalide/isoindolinones from Hypoxylon fendleri BCC32408
Issued Date
2017-07-01
Resource Type
ISSN
00319422
Other identifier(s)
2-s2.0-85016743395
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Phytochemistry. Vol.139, (2017), 8-17
Suggested Citation
Chakapong Intaraudom, Nantiya Bunbamrung, Aibrohim Dramae, Nattawut Boonyuen, Palangpon Kongsaeree, Kitlada Srichomthong, Sumalee Supothina, Pattama Pittayakhajonwut Terphenyl derivatives and drimane – Phathalide/isoindolinones from Hypoxylon fendleri BCC32408. Phytochemistry. Vol.139, (2017), 8-17. doi:10.1016/j.phytochem.2017.03.008 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/41475
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Terphenyl derivatives and drimane – Phathalide/isoindolinones from Hypoxylon fendleri BCC32408
Other Contributor(s)
Abstract
© 2017 Elsevier Ltd The genus Hypoxylon, a member of the family Xylariaceae, has been known to produce significant secondary metabolites in terms of chemical diversity. Moreover, the compounds isolated can also be used as chemotaxonomic characters for differentiation among the two sections, which are sect. Annulata and sect. Hypoxylon. In our continuing chemical screening programme for novel compounds, the crude extracts of H. fendleri BCC32408 gave significant chemical profiles in HPLC analyses. Thus, the chemical investigation of these crude extracts was then carried out. The investigation led to the isolation of ten previously undescribed compounds including three terphenylquinones (fendleryls A – C), one terphenyl (fendleryl D), and six novel drimane – phthalide-type lactone/isoindolinones derivatives (fendlerinines A – F) along with seven known compounds (2-O-methylatromentin, rickenyl E, atromentin, rickenyls C – D, (+)-ramulosin, and O-hydroxyphenyl acetic acid). The chemical structures were determined on the basis of spectroscopic analyses, including 1D, 2D NMR and high-resolution mass spectrometry, as well as chemical transformations. In addition, these isolated compounds were assessed for antimicrobial activity including antimalarial (against Plasmodium falciparum, K-1 strain), antifungal (against Candida albicans), antibacterial (against Bacillus cereus) activities. Cytotoxicity against both cancerous (KB, MCF-7, NCI-H187) and non-cancerous (Vero) cells of these compounds were also evaluated.