Publication:
Sentiment classification with support vector machines and multiple kernel functions

dc.contributor.authorTanasanee Phienthrakulen_US
dc.contributor.authorBoonserm Kijsirikulen_US
dc.contributor.authorHiroya Takamuraen_US
dc.contributor.authorManabu Okumuraen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherChulalongkorn Universityen_US
dc.contributor.otherTokyo Institute of Technologyen_US
dc.date.accessioned2018-09-13T06:33:34Z
dc.date.available2018-09-13T06:33:34Z
dc.date.issued2009-12-01en_US
dc.description.abstractSupport vector machine (SVM) is a learning technique that performs well on sentiment classification. The performance of SVM depends on the used kernel function. Hence, if the suitable kernel is chosen, the efficiency of classification should be improved. There are many approaches to define a new kernel function. Non-negative linear combination of multiple kernels is an alternative, and the performance of sentiment classification can be enhanced when the suitable kernels are combined. In this paper, we analyze and compare various non-negative linear combination kernels. These kernels are applied on product reviews to determine whether a review is positive or negative. The results show that the performance of the combination kernels that outperforms the single kernels. © 2009 Springer-Verlag Berlin Heidelberg.en_US
dc.identifier.citationLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol.5864 LNCS, No.PART 2 (2009), 583-592en_US
dc.identifier.doi10.1007/978-3-642-10684-2_65en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-76249089451en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/27471
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=76249089451&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleSentiment classification with support vector machines and multiple kernel functionsen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=76249089451&origin=inwarden_US

Files

Collections