Publication:
Atomic force microscopy

dc.contributor.authorM. Dumanen_US
dc.contributor.authorI. Neundlingeren_US
dc.contributor.authorR. Zhuen_US
dc.contributor.authorJ. Preineren_US
dc.contributor.authorC. Lamprechten_US
dc.contributor.authorL. A. Chtcheglovaen_US
dc.contributor.authorC. Ranklen_US
dc.contributor.authorT. Puntheeranuraken_US
dc.contributor.authorA. Ebneren_US
dc.contributor.authorP. Hinterdorferen_US
dc.contributor.otherJohannes Kepler Universitat Linzen_US
dc.contributor.otherAgilent Technologies Osterrreich GmbHen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-06-11T04:32:36Z
dc.date.available2018-06-11T04:32:36Z
dc.date.issued2012-12-01en_US
dc.description.abstractAtomic force microscopy (AFM) allows high-resolution topographical images to be obtained at the nanometer scale together with single molecule force measurements on biological samples in their physiological environment. Therefore, it is a powerful tool for detecting the forces and the dynamics of the interaction between individual ligands and receptors on cellular surfaces. This article describes sample preparation methods, different AFM imaging modes, AFM tip functionalization, current methodology, and applications of molecular recognition studies using AFM. © 2012 Elsevier B.V. All rights reserved.en_US
dc.identifier.citationComprehensive Biophysics. Vol.2, (2012), 111-143en_US
dc.identifier.doi10.1016/B978-0-12-374920-8.00213-7en_US
dc.identifier.other2-s2.0-84882787867en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/13563
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882787867&origin=inwarden_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.titleAtomic force microscopyen_US
dc.typeChapteren_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84882787867&origin=inwarden_US

Files

Collections