Publication:
Dynamics of elastic bodies connected by a thin soft inelastic layer

dc.contributor.authorChristian Lichten_US
dc.contributor.authorSomsak Orankitjaroenen_US
dc.contributor.otherCNRS Centre National de la Recherche Scientifiqueen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherSouth Carolina Commission on Higher Educationen_US
dc.date.accessioned2018-10-19T04:56:30Z
dc.date.available2018-10-19T04:56:30Z
dc.date.issued2013-03-01en_US
dc.description.abstractWe extend the study of Licht et al. (2013) [1] devoted to the dynamic response of a structure made of two linearly elastic bodies connected by a thin soft adhesive layer made of a Kelvin-Voigt-type nonlinear viscoelastic material to the case of a generalized standard material with a positive definite quadratic density of free energy. A concise formulation in terms of an evolution equation in a Hilbert space of possible states with finite energy makes it possible to identify the asymptotic behavior, when some geometrical and mechanical parameters tend to their natural limits, like the response of the two bodies connected by a mechanical constraint. Its law has the same structure as that of the adhesive but with coefficients accounting for the relative behavior of the parameters. © 2013 Académie des sciences.en_US
dc.identifier.citationComptes Rendus - Mecanique. Vol.341, No.3 (2013), 323-332en_US
dc.identifier.doi10.1016/j.crme.2013.01.001en_US
dc.identifier.issn16310721en_US
dc.identifier.other2-s2.0-84875224105en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/31766
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84875224105&origin=inwarden_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.titleDynamics of elastic bodies connected by a thin soft inelastic layeren_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84875224105&origin=inwarden_US

Files

Collections