Publication:
Solution properties of some classes of operator equations in hilbert spaces

dc.contributor.authorPhakdi Charoensawanen_US
dc.contributor.authorVu Quoc Phongen_US
dc.contributor.authorNguyen Van Sanhen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherOhio Universityen_US
dc.date.accessioned2018-09-24T09:12:39Z
dc.date.available2018-09-24T09:12:39Z
dc.date.issued2010-06-01en_US
dc.description.abstractWe study properties of solutions of the operator equation ℒu = f, u, f ⋯ H,(*), where ℒ a closable linear operator on a Hilbert space H, such that there exists a self-adjoint operator D on H, with the resolution of identity E(·), which commutes with ℒ. We are interested in the question of regular admissibility of the subspace H(Λ): =E(Λ )H, i.e. when for every f ⋯ H(Λ) there exists a unique (mild) solution u in H (Λ) of this equation. We introduce the notion of equation spectrum Σ associated with Eq. (*), and prove that if Λ ⊂ is a compact subset such that Λ ∩ Σ = ∅, then H (Λ) is regularly admissible. If Λ ⊂ is an arbitrary Borel subset such that Λ ∩ Σ = ∅, then, in general, H(Λ) needs not be regularly admissible, but we derive necessary and sufficient conditions, in terms of some inequalities, for the regular admissibility of H(Λ). Our results are generalizations of the well-known spectral mapping theorem of Gearhart-Herbst-Howland-Prüss [4], [5], [6], [9], as well as of the recent results of Cioranescu-Lizama [3], Schüler [10] and Vu [11], [12]. © 2010 World Scientific Publishing Company.en_US
dc.identifier.citationAsian-European Journal of Mathematics. Vol.3, No.2 (2010), 263-273en_US
dc.identifier.doi10.1142/S1793557110000180en_US
dc.identifier.issn17937183en_US
dc.identifier.issn17935571en_US
dc.identifier.other2-s2.0-84857543343en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/29330
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84857543343&origin=inwarden_US
dc.subjectMathematicsen_US
dc.titleSolution properties of some classes of operator equations in hilbert spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84857543343&origin=inwarden_US

Files

Collections