Publication:
MAP estimation of Pearson Type IV random vectors in AWGN

dc.contributor.authorPichid Kittisuwanen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-06-11T04:45:12Z
dc.date.available2018-06-11T04:45:12Z
dc.date.issued2012-10-02en_US
dc.description.abstractThis paper is concerned with wavelet-based image denoising using Bayesian technique. In conventional denoising process, The parameters of probability density function (PDF) are usually calculated from the first few moments, mean and variance. In this work, a new image denoising algorithm based on Pearson Type IV random vectors is proposed. Pearson Type IV is used because it allows higher-order moments (skewness and kurtosis) to be incorporated into the noiseless wavelet coefficients' probabilistic model. One of the cruxes of the Bayesian image denoising methods is to estimate statistical parameters for a shrinkage function. We employ maximum a posterior (MAP) estimation to calculate local variances with Gamma density prior for local observed variances and Gaussian distribution for noisy wavelet coefficients. The experimental results show that the proposed method yields good denoising results. © 2012 IEEE.en_US
dc.identifier.citation2012 9th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2012. (2012)en_US
dc.identifier.doi10.1109/ECTICon.2012.6254122en_US
dc.identifier.other2-s2.0-84866760879en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/14033
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84866760879&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleMAP estimation of Pearson Type IV random vectors in AWGNen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84866760879&origin=inwarden_US

Files

Collections