Publication:
Efficient mercury removal at ultralow metal concentrations by cysteine functionalized carbon-coated magnetite

dc.contributor.authorAssadawoot Srikhaowen_US
dc.contributor.authorTeera Butbureeen_US
dc.contributor.authorWeeraphat Pon-Onen_US
dc.contributor.authorToemsak Srikhirinen_US
dc.contributor.authorKanchana Uraisinen_US
dc.contributor.authorKomkrit Suttiponpaniten_US
dc.contributor.authorSuwilai Chaveanghongen_US
dc.contributor.authorSiwaporn Meejoo Smithen_US
dc.contributor.otherPTT Public Company Limiteden_US
dc.contributor.otherKasetsart Universityen_US
dc.contributor.otherThailand National Nanotechnology Centeren_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherCenter of Sustainable Energy and Green Materials and Department of Chemistryen_US
dc.date.accessioned2020-12-28T04:35:18Z
dc.date.available2020-12-28T04:35:18Z
dc.date.issued2020-11-02en_US
dc.description.abstract© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This work reports the preparation and utility of cysteine-functionalized carbon-coated Fe3 O4 materials (Cys-C@Fe3 O4) as efficient sorbents for remediation of Hg(II)-contaminated water. Efficient removal (90%) of Hg(II) from 1000 ppb aqueous solutions is possible, at very low Cys-C@Fe3 O4 sorbent loadings (0.01 g sorbent per liter of Hg(II) solution). At low metal concentrations (5–100 ppb Hg(II)), where adsorption is typically slow, Hg(II) removal efficiencies of 94–99.4% were achievable, resulting in final Hg(II) levels of <1.0 ppb. From adsorption isotherms, the Hg(II) adsorption capacity for Cys-C@Fe3 O4 is 94.33 mg g−1, around three times that of carbon-coated Fe3 O4 material. The highest partition coefficient (PC) of 2312.5 mgg−1 µM−1 was achieved at the initial Hg (II) concentration of 100 ppb, while significantly high PC values of 300 mgg−1 µM−1 and above were also obtained in the ultralow concentration range (≤20 ppb). Cys-C@Fe3 O4 exhibits excellent selectivity for Hg(II) when tested in the presence of Pb(II), Ni(II), and Cu(II) ions, is easily separable from aqueous media by application of an external magnet, and can be regenerated for three subsequent uses without compromising Hg(II) uptake. Derived from commercially available raw materials, it is highly possible to achieve large-scale production of the functional sorbent for practical applications.en_US
dc.identifier.citationApplied Sciences (Switzerland). Vol.10, No.22 (2020), 1-18en_US
dc.identifier.doi10.3390/app10228262en_US
dc.identifier.issn20763417en_US
dc.identifier.other2-s2.0-85096389610en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/60430
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096389610&origin=inwarden_US
dc.subjectChemical Engineeringen_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.titleEfficient mercury removal at ultralow metal concentrations by cysteine functionalized carbon-coated magnetiteen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096389610&origin=inwarden_US

Files

Collections