Publication:
Minimax estimation of kernel mean embeddings

dc.contributor.authorIlya Tolstikhinen_US
dc.contributor.authorBharath K. Sriperumbuduren_US
dc.contributor.authorKrikamol Muandeten_US
dc.contributor.otherMax Planck Institute for Intelligent Systemsen_US
dc.contributor.otherPennsylvania State Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-21T07:20:00Z
dc.date.accessioned2019-03-14T08:03:29Z
dc.date.available2018-12-21T07:20:00Z
dc.date.available2019-03-14T08:03:29Z
dc.date.issued2017-07-01en_US
dc.description.abstract©2017 Ilya Tolstikhin, Bharath K. Sriperumbudur, and Krikamol Muandet. In this paper, we study the minimax estimation of the Bochner integral (Equation Presented) also called as the kernel mean embedding, based on random samples drawn i.i.d. from P, where k : X × X → ℝ is a positive definite kernel. Various estimators (including the empirical estimator), θnof µk(P) are studied in the literature wherein all of them satisfy ∥θn-µk(P)∥Hk= OP(n-1/2) with Hkbeing the reproducing kernel Hilbert space induced by k. The main contribution of the paper is in showing that the above mentioned rate of n-1/2is minimax in ∥· ∥Hkand ∥· ∥L2(ℝd)-norms over the class of discrete measures and the class of measures that has an infinitely differentiable density, with k being a continuous translation-invariant kernel on ℝd. The interesting aspect of this result is that the minimax rate is independent of the smoothness of the kernel and the density of P (if it exists).en_US
dc.identifier.citationJournal of Machine Learning Research. Vol.18, (2017), 1-47en_US
dc.identifier.issn15337928en_US
dc.identifier.issn15324435en_US
dc.identifier.other2-s2.0-85030182233en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/42438
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85030182233&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.titleMinimax estimation of kernel mean embeddingsen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85030182233&origin=inwarden_US

Files

Collections