Publication:
MAP estimation of two-sided gamma random vectors in AWGN

dc.contributor.authorPichid Kittisuwanen_US
dc.contributor.authorThitiporn Chanwimaluangen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherThailand National Electronics and Computer Technology Centeren_US
dc.date.accessioned2018-06-11T04:48:06Z
dc.date.available2018-06-11T04:48:06Z
dc.date.issued2012-07-23en_US
dc.description.abstractIn this work, we present new Bayesian estimator for spherically-contoured Two-Sided Gamma random vectors in additive white Gaussian noise (AWGN). This PDF is used in view of the fact that it is more peaked and the tails are heavier to be incorporated in the probabilistic modeling of the wavelet coefficients. One of the cruxes of the Bayesian image denoising methods is to estimate statistical parameters for a shrinkage function. We employ maximum a posterior (MAP) estimation to calculate local variances with Gamma density prior for local observed variances and Gaussian distribution for noisy wavelet coefficients. The experimental results show that the proposed method yields good denoising results. © 2012 IEEE.en_US
dc.identifier.citation2012 IEEE International Conference on Industrial Technology, ICIT 2012, Proceedings. (2012), 368-371en_US
dc.identifier.doi10.1109/ICIT.2012.6209965en_US
dc.identifier.other2-s2.0-84863936032en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/14147
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84863936032&origin=inwarden_US
dc.subjectEngineeringen_US
dc.titleMAP estimation of two-sided gamma random vectors in AWGNen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84863936032&origin=inwarden_US

Files

Collections