Publication:
A bayesian reconstruction method with marginalized uncertainty model for camera motion in microrotation imaging

dc.contributor.authorDanai Laksameethanasanen_US
dc.contributor.authorSami S. Brandten_US
dc.contributor.otherAalto Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherOulun Yliopistoen_US
dc.date.accessioned2018-09-24T09:00:27Z
dc.date.available2018-09-24T09:00:27Z
dc.date.issued2010-07-01en_US
dc.description.abstractReconstruction of a 3-D structure from multiple projection images requires prior knowledge of projection directions or camera motion parameters that describe the relative positions and orientations of 3-D structure with respect to the camera. These parameters can be estimated using, for instance, the conventional correlation alignment and feature-based methods. However, the alignment methods are not perfect, where the inaccuracy of the estimated motion parameters causes artifacts in the reconstruction. To overcome this problem, we propose a Bayesian approach to reconstruct the object that takes the motion uncertainty distribution into account. Moreover, we consider the motion parameters as nuisance parameters and integrate them out from the posterior distribution, assuming a Gaussian uncertainty model, which yields a statistical cost function to be minimized. The proposed method is applied in microrotation fluorescence imaging, where we aim at 3-D reconstruction of a rotating object from an image series, acquired by an optical microscope. The experiments with simulated and real microrotation datasets demonstrate that the proposed method provides visually and numerically better results than the traditional reconstruction methods, which ignore the uncertainty of the motion estimates. © 2006 IEEE.en_US
dc.identifier.citationIEEE Transactions on Biomedical Engineering. Vol.57, No.7 (2010), 1719-1728en_US
dc.identifier.doi10.1109/TBME.2010.2043674en_US
dc.identifier.issn00189294en_US
dc.identifier.other2-s2.0-77953787283en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/29082
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953787283&origin=inwarden_US
dc.subjectEngineeringen_US
dc.titleA bayesian reconstruction method with marginalized uncertainty model for camera motion in microrotation imagingen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77953787283&origin=inwarden_US

Files

Collections