Publication: Zn<sup>2+</sup>-dependent autocatalytic activity of the Bordetella pertussis CyaA-hemolysin
Submitted Date
Received Date
Accepted Date
Issued Date
2017-04-15
Copyright Date
Announcement No.
Application No.
Patent No.
Valid Date
Resource Type
Edition
Resource Version
Language
File Type
No. of Pages/File Size
ISBN
ISSN
10902104
0006291X
0006291X
eISSN
Scopus ID
WOS ID
Pubmed ID
arXiv ID
Call No.
Other identifier(s)
2-s2.0-85014098136
Journal Title
Volume
Issue
item.page.oaire.edition
Start Page
End Page
Access Rights
Access Status
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Physical Location
Bibliographic Citation
Biochemical and Biophysical Research Communications. Vol.485, No.4 (2017), 720-724
Citation
Veerada Raksanoh, Lalida Shank, Panchika Prangkio, Mattayaus Yentongchai, Somsri Sakdee, Chompounoot Imtong, Chanan Angsuthanasombat (2017). Zn<sup>2+</sup>-dependent autocatalytic activity of the Bordetella pertussis CyaA-hemolysin. Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/41921.
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Zn<sup>2+</sup>-dependent autocatalytic activity of the Bordetella pertussis CyaA-hemolysin
Alternative Title(s)
Author's Affiliation
Author's E-mail
Editor(s)
Editor's Affiliation
Corresponding Author(s)
Creator(s)
Compiler
Advisor(s)
Illustrator(s)
Applicant(s)
Inventor(s)
Issuer
Assignee
Series
Has Part
Abstract
© 2017 Elsevier Inc. Proteolytic degradation of the ∼100-kDa isolated RTX (Repeat-in-ToXin) subdomain (CyaA-RTX) of the Bordetella pertussis CyaA-hemolysin (CyaA-Hly) was evidently detected upon solely-prolonged incubation. Here, a truncated CyaA-Hly fragment (CyaA-HP/BI) containing hydrophobic and acylation regions connected with the first RTX block (BI1015–1088) was constructed as a putative precursor for investigating its potential autocatalysis. The 70-kDa His-tagged CyaA-HP/BI fragment which was over-expressed in Escherichia coli as insoluble aggregate was entirely solubilized with 4 M urea. After re-naturation in a Ni2+-NTA affinity column, the purified-refolded CyaA-HP/BI fragment in HEPES buffer (pH 7.4) supplemented with 2 mM CaCl2was completely degraded upon incubation at 37 °C for 3 h. Addition of 1,10-phenanthroline‒an inhibitor of Zn2+-dependent metalloproteases markedly reduced the extent of degradation for CyaA-HP/BI and CyaA-RTX, but the degradative effect was clearly enhanced by addition of 100 mM ZnCl2. Structural analysis of a plausible CyaA-HP/BI model revealed a potential Zn2+-binding His-Asp cluster located between the acylation region and RTX-BI1015–1088. Moreover, Arg997‒one of the identified cleavage sites of the CyaA-RTX fragment was located in close proximity to the Zn2+-binding catalytic site. Overall results demonstrated for the first time that the observed proteolysis of CyaA-HP/BI and CyaA-RTX fragments is conceivably due to their Zn2+-dependent autocatalytic activity.