Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
dc.contributor.author | Arora J.K. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2023-07-17T18:01:37Z | |
dc.date.available | 2023-07-17T18:01:37Z | |
dc.date.issued | 2023-09-15 | |
dc.description.abstract | Here, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.1 | |
dc.identifier.citation | STAR Protocols Vol.4 No.3 (2023) | |
dc.identifier.doi | 10.1016/j.xpro.2023.102387 | |
dc.identifier.eissn | 26661667 | |
dc.identifier.scopus | 2-s2.0-85163519797 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/87861 | |
dc.rights.holder | SCOPUS | |
dc.subject | Biochemistry, Genetics and Molecular Biology | |
dc.title | Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85163519797&origin=inward | |
oaire.citation.issue | 3 | |
oaire.citation.title | STAR Protocols | |
oaire.citation.volume | 4 | |
oairecerif.author.affiliation | Mahidol University, Faculty of Dentistry | |
oairecerif.author.affiliation | Suranaree University of Technology | |
oairecerif.author.affiliation | Mahidol University | |
oairecerif.author.affiliation | Wellcome Sanger Institute |