Computational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types

dc.contributor.authorArora J.K.
dc.contributor.otherMahidol University
dc.date.accessioned2023-07-17T18:01:37Z
dc.date.available2023-07-17T18:01:37Z
dc.date.issued2023-09-15
dc.description.abstractHere, we present a computational approach for investigating highly variable genes (HVGs) associated with biological pathways of interest, across multiple time points and cell types in single-cell RNA-sequencing (scRNA-seq) data. Using public dengue virus and COVID-19 datasets, we describe steps for using the framework to characterize the dynamic expression levels of HVGs related to common and cell-type-specific biological pathways over multiple immune cell types. For complete details on the use and execution of this protocol, please refer to Arora et al.1
dc.identifier.citationSTAR Protocols Vol.4 No.3 (2023)
dc.identifier.doi10.1016/j.xpro.2023.102387
dc.identifier.eissn26661667
dc.identifier.scopus2-s2.0-85163519797
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/87861
dc.rights.holderSCOPUS
dc.subjectBiochemistry, Genetics and Molecular Biology
dc.titleComputational workflow for investigating highly variable genes in single-cell RNA-seq across multiple time points and cell types
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85163519797&origin=inward
oaire.citation.issue3
oaire.citation.titleSTAR Protocols
oaire.citation.volume4
oairecerif.author.affiliationMahidol University, Faculty of Dentistry
oairecerif.author.affiliationSuranaree University of Technology
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationWellcome Sanger Institute

Files

Collections