Using orange data mining for meat classification: The preliminary application of machine learning

dc.contributor.authorPhoemchalard C.
dc.contributor.authorSenarath N.
dc.contributor.authorMalila P.
dc.contributor.authorTathong T.
dc.contributor.authorKhamhan S.
dc.contributor.correspondencePhoemchalard C.
dc.contributor.otherMahidol University
dc.date.accessioned2025-02-11T18:46:16Z
dc.date.available2025-02-11T18:46:16Z
dc.date.issued2024-11-01
dc.description.abstractOrange Data Mining study on the classification of buffalo, beef, and goat meats, Machine Learning (ML) classifiers including Support Vector Machine (SVM), Neural Network (NN), and Naïve Bayes (NB) are well performed to achieve 100% accuracy across all features. Random Forest (RF) demonstrated the best performance more than 97% in AUC, CA, F1, and MCC. Other models such as Gradient Boosting (GB), AdaBoost, CN2 Rule Induction (CN2), Decision Tree (DT), and k-Nearest Neighbors (KNN) are performed better but there were less efficient. In the application of specific classifiers for species-based meat quality attributes, SVM, NN and NB should be considered as the best options.
dc.identifier.citationInternational Journal of Agricultural Technology Vol.20 No.6 (2024) , 2497-2512
dc.identifier.eissn26300192
dc.identifier.scopus2-s2.0-85216287437
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/104242
dc.rights.holderSCOPUS
dc.subjectAgricultural and Biological Sciences
dc.titleUsing orange data mining for meat classification: The preliminary application of machine learning
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85216287437&origin=inward
oaire.citation.endPage2512
oaire.citation.issue6
oaire.citation.startPage2497
oaire.citation.titleInternational Journal of Agricultural Technology
oaire.citation.volume20
oairecerif.author.affiliationNakhon Phanom University
oairecerif.author.affiliationMahidol University

Files

Collections