A multi-omics machine learning classifier for outgrowth of cow's milk allergy in children
Issued Date
2025-01-01
Resource Type
eISSN
25154184
Scopus ID
2-s2.0-105007456586
Pubmed ID
40407702
Journal Title
Molecular Omics
Rights Holder(s)
SCOPUS
Bibliographic Citation
Molecular Omics (2025)
Suggested Citation
Hendrickx D.M., Savova M.V., Zhu P., An R., Boeren S., Klomp K., Mutte S.K., Wopereis H., van der Molen R.G., Harms A.C., Belzer C., Chatchatee P., Nowak-Wegrzyn A., Lange L., Benjaponpitak S., Chong K.W., Sangsupawanich P., van Ampting M.T.J., Nijhuis M.M.O., Harthoorn L.F., Langford J.E., Knol J., Knipping K., Garssen J., Trendelenburg V., Pesek R., Davis C.M., Muraro A., Erlewyn-Lajeunesse M., Fox A.T., Michaelis L.J., Beyer K., Noimark L., Stiefel G., Schauer U., Hamelmann E., Peroni D., Boner A. A multi-omics machine learning classifier for outgrowth of cow's milk allergy in children. Molecular Omics (2025). doi:10.1039/d4mo00245h Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/110679
Title
A multi-omics machine learning classifier for outgrowth of cow's milk allergy in children
Author(s)
Hendrickx D.M.
Savova M.V.
Zhu P.
An R.
Boeren S.
Klomp K.
Mutte S.K.
Wopereis H.
van der Molen R.G.
Harms A.C.
Belzer C.
Chatchatee P.
Nowak-Wegrzyn A.
Lange L.
Benjaponpitak S.
Chong K.W.
Sangsupawanich P.
van Ampting M.T.J.
Nijhuis M.M.O.
Harthoorn L.F.
Langford J.E.
Knol J.
Knipping K.
Garssen J.
Trendelenburg V.
Pesek R.
Davis C.M.
Muraro A.
Erlewyn-Lajeunesse M.
Fox A.T.
Michaelis L.J.
Beyer K.
Noimark L.
Stiefel G.
Schauer U.
Hamelmann E.
Peroni D.
Boner A.
Savova M.V.
Zhu P.
An R.
Boeren S.
Klomp K.
Mutte S.K.
Wopereis H.
van der Molen R.G.
Harms A.C.
Belzer C.
Chatchatee P.
Nowak-Wegrzyn A.
Lange L.
Benjaponpitak S.
Chong K.W.
Sangsupawanich P.
van Ampting M.T.J.
Nijhuis M.M.O.
Harthoorn L.F.
Langford J.E.
Knol J.
Knipping K.
Garssen J.
Trendelenburg V.
Pesek R.
Davis C.M.
Muraro A.
Erlewyn-Lajeunesse M.
Fox A.T.
Michaelis L.J.
Beyer K.
Noimark L.
Stiefel G.
Schauer U.
Hamelmann E.
Peroni D.
Boner A.
Author's Affiliation
St. Marien Hospital, Bonn
Nutricia Research, Netherlands
Great North Children's Hospital
Utrechts Instituut voor Farmaceutische Wetenschappen
KK Women's And Children's Hospital
Ruhr-Universitat Bochum
Azienda Ospedale Università Padova
Guy's and St Thomas' NHS Foundation Trust
Mahidol University
Texas Children's Hospital
Leicester Royal Infirmary
Prince of Songkla University
Chulalongkorn University
Wageningen University & Research
Arkansas Children's Hospital
Leiden Academic Centre for Drug Research
NYU Langone Health
Charité – Universitätsmedizin Berlin
The Royal London Hospital
Azienda Ospedaliera Universitaria Integrata Verona
Radboud University Medical Center
Uniwersytet Warminsko-Mazurski w Olsztynie
University Hospital Southampton NHS Foundation Trust
Nutricia Research, Netherlands
Great North Children's Hospital
Utrechts Instituut voor Farmaceutische Wetenschappen
KK Women's And Children's Hospital
Ruhr-Universitat Bochum
Azienda Ospedale Università Padova
Guy's and St Thomas' NHS Foundation Trust
Mahidol University
Texas Children's Hospital
Leicester Royal Infirmary
Prince of Songkla University
Chulalongkorn University
Wageningen University & Research
Arkansas Children's Hospital
Leiden Academic Centre for Drug Research
NYU Langone Health
Charité – Universitätsmedizin Berlin
The Royal London Hospital
Azienda Ospedaliera Universitaria Integrata Verona
Radboud University Medical Center
Uniwersytet Warminsko-Mazurski w Olsztynie
University Hospital Southampton NHS Foundation Trust
Corresponding Author(s)
Other Contributor(s)
Abstract
Cow’s milk protein allergy (CMA) is one of the most common food allergies in children worldwide. However, it is still not well understood why certain children outgrow their CMA and others do not. While there is increasing evidence for a link of CMA with the gut microbiome, it is still unclear how the gut microbiome and metabolome interact with the immune system. Integrating data from different omics platforms and clinical data can help to unravel these interactions. In this study, we integrate clinical, microbial, (meta)proteomics, immune and metabolomics data into machine learning (ML) classification, using multi-view learning by late integration. The aim is to group infants into those that outgrew their CMA and those that did not. The results show that integration of microbiome data with clinical, immune, (meta)proteomics and metabolomics data could considerably improve classification of infants on outgrowth of CMA, compared to only considering one type of data. Moreover, pathways previously linked to development of CMA could also be related to outgrowth of this allergy.
