Identification of a plastic-degrading enzyme from Cryptococcus nemorosus and its use in self-degradable plastics
Issued Date
2023-01-01
Resource Type
ISSN
01757598
eISSN
14320614
Scopus ID
2-s2.0-85173735663
Pubmed ID
37801098
Journal Title
Applied Microbiology and Biotechnology
Rights Holder(s)
SCOPUS
Bibliographic Citation
Applied Microbiology and Biotechnology (2023)
Suggested Citation
Arunrattanamook N., Mhuantong W., Paemanee A., Reamtong O., Hararak B., Champreda V. Identification of a plastic-degrading enzyme from Cryptococcus nemorosus and its use in self-degradable plastics. Applied Microbiology and Biotechnology (2023). doi:10.1007/s00253-023-12816-6 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/90646
Title
Identification of a plastic-degrading enzyme from Cryptococcus nemorosus and its use in self-degradable plastics
Other Contributor(s)
Abstract
Abstract: For decades, plastic waste management has been one of the major ecological challenges of our society. Despite the introduction of biodegradable alternatives such as polylactic acid (PLA), their beneficial environmental impact is limited by the requirement of specific compost facility as biodegradation of PLA in natural environment occurs at a very slow rate. In this work, a plastic-degrading enzyme was utilized to facilitate degradation process. Genomic and proteomic tools were employed to identify a new biodegradable plastic-degrading enzyme from Cryptococcus nemorosus TBRC2959. The new enzyme, Cr14CLE, functions optimally under mild conditions with temperature range of 30 to 40 °C and suffers no significant loss of enzymatic activity at pH ranging from 6 to 8. In addition to PLA, Cr14CLE is capable to degrade other types of biodegradable plastic such as polybutylene succinate (PBS) and polybutylene adipate terephthalate (PBAT) as well as composite bioplastic. Applications of Cr14CLE have been demonstrated through the preparation of enzyme-coated PLA film and laminated PLA film with enzyme layer. PLA films prepared by both approaches exhibited capability to self-degrade in water. Key points: • Novel plastic-degrading enzyme (Cr14CLE) was identified and characterized. • Cr14CLE can degrade multiple types of biodegradable plastics under mild conditions. • Applications of Cr14CLE on self-degradable plastic were demonstrated.