Antibacterial Activities and Synergistic Interaction of Citrus Essential Oils and Limonene with Gentamicin against Clinically Isolated Methicillin-Resistant Staphylococcus aureus
Issued Date
2022-01-01
Resource Type
ISSN
23566140
eISSN
1537744X
Scopus ID
2-s2.0-85126173658
Pubmed ID
35264915
Journal Title
Scientific World Journal
Volume
2022
Rights Holder(s)
SCOPUS
Bibliographic Citation
Scientific World Journal Vol.2022 (2022)
Suggested Citation
Sreepian A., Popruk S., Nutalai D., Phutthanu C., Sreepian P.M. Antibacterial Activities and Synergistic Interaction of Citrus Essential Oils and Limonene with Gentamicin against Clinically Isolated Methicillin-Resistant Staphylococcus aureus. Scientific World Journal Vol.2022 (2022). doi:10.1155/2022/8418287 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/83920
Title
Antibacterial Activities and Synergistic Interaction of Citrus Essential Oils and Limonene with Gentamicin against Clinically Isolated Methicillin-Resistant Staphylococcus aureus
Author(s)
Author's Affiliation
Other Contributor(s)
Abstract
Citrus reticulata Blanco and Citrus aurantifolia are the edible plants which contain several biological properties including antibacterial activity. The aims of the present study were to determine the chemical compositions and evaluate antibacterial activities of citrus essential oils extracted from the fruit peels of C. reticulata (CREO) and C. aurantifolia (CAEO), alone and in combination with gentamicin, against a panel of clinically isolated methicillin-resistant S. aureus (MRSA) (n = 40) and methicillin-susceptible S. aureus (MSSA) (n = 45). Gas chromatography-mass spectrometry analysis revealed that 12 and 25 compounds were identified in CREO and CAEO with the most predominant compound of limonene (62.9-72.5%). The antibacterial activities were determined by agar disk diffusion and resazurin-based microdilution methods. The results found that almost all MRSA isolates were resistant to ciprofloxacin, erythromycin, and clindamycin, and some isolates were resistant to gentamicin. CREO and CAEO exhibited inhibitory effects toward clinical isolates (MIC: 1.0-32.0 and 8.0-32.0 mg/mL, respectively), with a similar trend to limonene (MIC: 1.0-32.0 mg/mL). However, the higher antibacterial effects were found in CREO and limonene when compared to CAEO (p < 0.01). In combination effect, the results showed the synergistic interaction of gentamicin with CREO and limonene on the MRSA and MSSA isolates (FIC indexes: 0.012-0.258 and 0.012-0.375), but that interaction of gentamicin with CAEO was observed only on MRSA (FIC index: 0.012-0.016). These findings demonstrated the potential of these citrus essential oils as natural antibacterial agents that may contribute to reduce the emerging of antimicrobial-resistant bacteria.