Anomaly Detection in Red Reflex Images Using Deep Learning Approaches
dc.contributor.author | Kriangsakdachai S. | |
dc.contributor.author | Ayudhya S.P.N. | |
dc.contributor.author | Kusakunniran W. | |
dc.contributor.author | Ayudhya W.D.N. | |
dc.contributor.author | Chantrasagul C. | |
dc.contributor.author | Manasboonpermpool R. | |
dc.contributor.author | Sathianvichitr K. | |
dc.contributor.author | Sangsre P. | |
dc.contributor.author | Surachatkumtonekul T. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2023-06-18T17:02:44Z | |
dc.date.available | 2023-06-18T17:02:44Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | Amblyopia is a noteworthy disease in children leading to visual loss. This work focuses on creating a deep learning model for the detection of Amblyopia factors in patients wearing masks under the COVID-19 pandemic. | |
dc.identifier.citation | IEEE Region 10 Annual International Conference, Proceedings/TENCON Vol.2022-November (2022) | |
dc.identifier.doi | 10.1109/TENCON55691.2022.9977626 | |
dc.identifier.eissn | 21593450 | |
dc.identifier.issn | 21593442 | |
dc.identifier.scopus | 2-s2.0-85145649664 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/84324 | |
dc.rights.holder | SCOPUS | |
dc.subject | Computer Science | |
dc.title | Anomaly Detection in Red Reflex Images Using Deep Learning Approaches | |
dc.type | Conference Paper | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85145649664&origin=inward | |
oaire.citation.title | IEEE Region 10 Annual International Conference, Proceedings/TENCON | |
oaire.citation.volume | 2022-November | |
oairecerif.author.affiliation | Siriraj Hospital | |
oairecerif.author.affiliation | Mahidol University |