String compression in FA–presentable structures

dc.contributor.authorBerdinsky D.
dc.contributor.authorJain S.
dc.contributor.authorKhoussainov B.
dc.contributor.authorStephan F.
dc.contributor.otherMahidol University
dc.date.accessioned2023-05-19T07:39:28Z
dc.date.available2023-05-19T07:39:28Z
dc.date.issued2023-02-20
dc.description.abstractWe construct a FA–presentation ψ:L→N of the structure (N;S) for which a numerical characteristic r(n) defined as the maximum number ψ(w) for all strings w∈L of length less than or equal to n grows faster than any tower of exponents of a fixed height. This result leads us to a more general notion of a compressibility rate defined for FA–presentations of any FA–presentable structure. We show the existence of FA–presentations for the configuration space of a Turing machine and Cayley graphs of some groups for which it grows faster than any tower of exponents of a fixed height. For FA–presentations of the Presburger arithmetic (N;+) we show that it is bounded from above by a linear function.
dc.identifier.citationTheoretical Computer Science Vol.947 (2023)
dc.identifier.doi10.1016/j.tcs.2023.113705
dc.identifier.issn03043975
dc.identifier.scopus2-s2.0-85146847916
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/81774
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titleString compression in FA–presentable structures
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85146847916&origin=inward
oaire.citation.titleTheoretical Computer Science
oaire.citation.volume947
oairecerif.author.affiliationNational University of Singapore
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationUniversity of Electronic Science and Technology of China

Files

Collections