On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells
Issued Date
2024-05-17
Resource Type
eISSN
14248220
Scopus ID
2-s2.0-85194217863
Pubmed ID
38794040
Journal Title
Sensors (Basel, Switzerland)
Volume
24
Issue
10
Rights Holder(s)
SCOPUS
Bibliographic Citation
Sensors (Basel, Switzerland) Vol.24 No.10 (2024)
Suggested Citation
Panklang N., Techaumnat B., Tanthanuch N., Chotivanich K., Horprathum M., Nakano M. On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells. Sensors (Basel, Switzerland) Vol.24 No.10 (2024). doi:10.3390/s24103186 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/98584
Title
On-Chip Impedance Spectroscopy of Malaria-Infected Red Blood Cells
Corresponding Author(s)
Other Contributor(s)
Abstract
Malaria is a disease that affects millions of people worldwide, particularly in developing countries. The development of accurate and efficient methods for the detection of malaria-infected cells is crucial for effective disease management and control. This paper presents the electrical impedance spectroscopy (EIS) of normal and malaria-infected red blood cells. An EIS microfluidic device, comprising a microchannel and a pair of coplanar electrodes, was fabricated for single-cell measurements in a continuous manner. Based on the EIS results, the aim of this work is to discriminate Plasmodium falciparum-infected red blood cells from the normal ones. Different from typical impedance spectroscopy, our measurement was performed for the cells in a low-conductivity medium in a frequency range between 50 kHz and 800 kHz. Numerical simulation was utilized to study the suitability parameters of the microchannel and electrodes for the EIS experiment over the measurement frequencies. The measurement results have shown that by using the low-conductivity medium, we could focus on the change in the conductance caused by the presence of a cell in the sensing electrode gap. The results indicated a distinct frequency spectrum of the conductance between the normal and infected red blood cells, which can be further used for the detection of the disease.