Absolute calibration of LHAASO WFCTA camera based on LED
Issued Date
2022-01-01
Resource Type
ISSN
01689002
Scopus ID
2-s2.0-85119952163
Journal Title
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume
1021
Rights Holder(s)
SCOPUS
Bibliographic Citation
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Vol.1021 (2022)
Suggested Citation
Aharonian F., An Q., Axikegu, Bai L.X., Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Cai H., Cai J.T., Cao Z., Cao Z., Chang J., Chang J.F., Chen B.M., Chen E.S., Chen J., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S.H., Chen S.Z., Chen T.L., Chen X.L., Chen Y., Cheng N., Cheng Y.D., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, della Volpe D., Piazzoli B.D.E., Dong X.J., Duan K.K., Fan J.H., Fan Y.Z., Fan Z.X., Fang J., Fang K., Feng C.F., Feng L., Feng S.H., Feng Y.L., Fu Y.T., Gan H.Y., Gao B., Gao C.D., Gao L.Q., Gao Q., Gao W., Ge M.M., Geng L.S., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo J.G., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., He H.H., He H.N., He J.C., He S.L., He X.B., He Y., Heller M., Hor Y.K., Hou C., Hu H.B., Hu S., Hu S.C., Hu X.J., Huang D.H., Huang Q.L., Huang W.H., Huang X.T., Huang X.Y., Huang Z.C., Ji F., Ji X.L., Jia H.Y., Jiang K., Jiang Z.J., Jin C., Ke T., Kuleshov D., Levochkin K., Li B.B., Li C., Li C., Li F. Absolute calibration of LHAASO WFCTA camera based on LED. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Vol.1021 (2022). doi:10.1016/j.nima.2021.165824 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/86933
Title
Absolute calibration of LHAASO WFCTA camera based on LED
Author(s)
Aharonian F.
An Q.
Axikegu
Bai L.X.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai H.
Cai J.T.
Cao Z.
Cao Z.
Chang J.
Chang J.F.
Chen B.M.
Chen E.S.
Chen J.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen X.L.
Chen Y.
Cheng N.
Cheng Y.D.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
della Volpe D.
Piazzoli B.D.E.
Dong X.J.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fan Z.X.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng Y.L.
Fu Y.T.
Gan H.Y.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Ge M.M.
Geng L.S.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.G.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He J.C.
He S.L.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou C.
Hu H.B.
Hu S.
Hu S.C.
Hu X.J.
Huang D.H.
Huang Q.L.
Huang W.H.
Huang X.T.
Huang X.Y.
Huang Z.C.
Ji F.
Ji X.L.
Jia H.Y.
Jiang K.
Jiang Z.J.
Jin C.
Ke T.
Kuleshov D.
Levochkin K.
Li B.B.
Li C.
Li C.
Li F.
An Q.
Axikegu
Bai L.X.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai H.
Cai J.T.
Cao Z.
Cao Z.
Chang J.
Chang J.F.
Chen B.M.
Chen E.S.
Chen J.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen X.L.
Chen Y.
Cheng N.
Cheng Y.D.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
della Volpe D.
Piazzoli B.D.E.
Dong X.J.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fan Z.X.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng Y.L.
Fu Y.T.
Gan H.Y.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Ge M.M.
Geng L.S.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.G.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He J.C.
He S.L.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou C.
Hu H.B.
Hu S.
Hu S.C.
Hu X.J.
Huang D.H.
Huang Q.L.
Huang W.H.
Huang X.T.
Huang X.Y.
Huang Z.C.
Ji F.
Ji X.L.
Jia H.Y.
Jiang K.
Jiang Z.J.
Jin C.
Ke T.
Kuleshov D.
Levochkin K.
Li B.B.
Li C.
Li C.
Li F.
Author's Affiliation
State Key Laboratory of Particle Detection & Electronics
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Wuhan University
Yunnan University
Institute of High Energy Physics Chinese Academy of Science
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Università degli Studi di Napoli Federico II
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
National Institute of Metrology China
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Wuhan University
Yunnan University
Institute of High Energy Physics Chinese Academy of Science
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Università degli Studi di Napoli Federico II
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
National Institute of Metrology China
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Other Contributor(s)
Abstract
The main scientific goal of the LHAASO WFCTA experiment is to measure the cosmic ray energy spectra and composition from 10 TeV to 1 EeV. Cherenkov photons in the extensive air shower measured by the SiPM camera of Cherenkov telescopes can be used to reconstruct the cosmic ray energy. The absolute calibration of the camera is a crucial step to achieve the accurate measurement of the cosmic ray energy spectrum. A multi-wavelength cylindrical illuminator based on LEDs is developed and mounted inside the telescope to calibrate and monitor the camera, and the illuminator's stability is better than 0.5% under the temperature variation from -26 to 26 °C. A portable probe with a single photoelectron resolution of 21.6% is developed. After calibration by National Institute of Metrology, China (NIM), the probe is taken to the LHAASO site to measure the absolute photon density of the cylindrical illuminator inside the telescope. Based on the illuminator with known photon density, the photon conversion factor of the camera can be calibrated, and the overall calibration uncertainty is less than 2.6%.