Pollination-precision hypothesis: support from native honey bees and nectar bats

dc.contributor.authorStewart A.B.
dc.contributor.authorDiller C.
dc.contributor.authorDudash M.R.
dc.contributor.authorFenster C.B.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T16:35:28Z
dc.date.available2023-06-18T16:35:28Z
dc.date.issued2022-08-01
dc.description.abstractThe evolution of floral traits is often considered to reflect selection for increased pollination efficiency. Known as the pollination-precision hypothesis, increased pollination efficiency is achieved by enhancing pollen deposition on precise areas of the pollinator. Most research to date addressing this hypothesis has examined plant species that are a priori predicted to place pollen precisely, but we still lack comparisons with species predicted to have low pollination efficiency. We studied 39 plant species with diverse floral morphologies and measured the precision of pollen placement on two pollinator groups: honey bees (genus Apis) and nectar bats (family Pteropodidae). Pollen was collected from four locations of each pollinator’s body (bees: dorsal thorax, ventral thorax, dorsal abdomen, ventral abdomen; bats: crown, face, chest, wing) to calculate pollen placement precision using Pielou’s evenness index. We also quantified variation in floral design by scoring floral symmetry, corolla fusion, floral orientation and stamen number. We confirm the importance of four floral character states (bilateral symmetry, fused corollas, horizontal orientation and reduced stamen number) in promoting precise pollen placement on diverse pollinators. Our findings provide phylogenetically corrected, empirical support that the evolution of the four floral characters reflect selection for enhanced precision of pollen placed on pollinators.
dc.identifier.citationNew Phytologist Vol.235 No.4 (2022) , 1629-1640
dc.identifier.doi10.1111/nph.18050
dc.identifier.eissn14698137
dc.identifier.issn0028646X
dc.identifier.pmid35194792
dc.identifier.scopus2-s2.0-85125615421
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/83183
dc.rights.holderSCOPUS
dc.subjectAgricultural and Biological Sciences
dc.titlePollination-precision hypothesis: support from native honey bees and nectar bats
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125615421&origin=inward
oaire.citation.endPage1640
oaire.citation.issue4
oaire.citation.startPage1629
oaire.citation.titleNew Phytologist
oaire.citation.volume235
oairecerif.author.affiliationSveriges lantbruksuniversitet
oairecerif.author.affiliationUniversity of Maryland, College Park
oairecerif.author.affiliationSouth Dakota State University
oairecerif.author.affiliationMahidol University

Files

Collections