Data-Driven Cutoff Selection for the Patient Health Questionnaire-9 Depression Screening Tool

dc.contributor.authorLevis B.
dc.contributor.authorBhandari P.M.
dc.contributor.authorNeupane D.
dc.contributor.authorFan S.
dc.contributor.authorSun Y.
dc.contributor.authorHe C.
dc.contributor.authorWu Y.
dc.contributor.authorKrishnan A.
dc.contributor.authorNegeri Z.
dc.contributor.authorImran M.
dc.contributor.authorRice D.B.
dc.contributor.authorRiehm K.E.
dc.contributor.authorAzar M.
dc.contributor.authorLevis A.W.
dc.contributor.authorBoruff J.
dc.contributor.authorCuijpers P.
dc.contributor.authorGilbody S.
dc.contributor.authorIoannidis J.P.A.
dc.contributor.authorKloda L.A.
dc.contributor.authorPatten S.B.
dc.contributor.authorZiegelstein R.C.
dc.contributor.authorHarel D.
dc.contributor.authorTakwoingi Y.
dc.contributor.authorMarkham S.
dc.contributor.authorAlamri S.H.
dc.contributor.authorAmtmann D.
dc.contributor.authorArroll B.
dc.contributor.authorAyalon L.
dc.contributor.authorBaradaran H.R.
dc.contributor.authorBeraldi A.
dc.contributor.authorBernstein C.N.
dc.contributor.authorBhana A.
dc.contributor.authorBombardier C.H.
dc.contributor.authorBuji R.I.
dc.contributor.authorButterworth P.
dc.contributor.authorCarter G.
dc.contributor.authorChagas M.H.
dc.contributor.authorChan J.C.N.
dc.contributor.authorChan L.F.
dc.contributor.authorChibanda D.
dc.contributor.authorClover K.
dc.contributor.authorConway A.
dc.contributor.authorConwell Y.
dc.contributor.authorDaray F.M.
dc.contributor.authorde Man-van Ginkel J.M.
dc.contributor.authorFann J.R.
dc.contributor.authorFischer F.H.
dc.contributor.authorField S.
dc.contributor.authorFisher J.R.W.
dc.contributor.authorFung D.S.S.
dc.contributor.authorGelaye B.
dc.contributor.authorGholizadeh L.
dc.contributor.authorGoodyear-Smith F.
dc.contributor.authorGreen E.P.
dc.contributor.authorGreeno C.G.
dc.contributor.authorHall B.J.
dc.contributor.authorHantsoo L.
dc.contributor.authorHärter M.
dc.contributor.authorHides L.
dc.contributor.authorHobfoll S.E.
dc.contributor.authorHonikman S.
dc.contributor.authorHyphantis T.
dc.contributor.authorInagaki M.
dc.contributor.authorIglesias-Gonzalez M.
dc.contributor.authorJeon H.J.
dc.contributor.authorJetté N.
dc.contributor.authorKhamseh M.E.
dc.contributor.authorKiely K.M.
dc.contributor.authorKohrt B.A.
dc.contributor.authorKwan Y.
dc.contributor.authorLara M.A.
dc.contributor.authorLevin-Aspenson H.F.
dc.contributor.authorLiu S.I.
dc.contributor.authorLotrakul M.
dc.contributor.authorLoureiro S.R.
dc.contributor.authorLöwe B.
dc.contributor.authorLuitel N.P.
dc.contributor.authorLund C.
dc.contributor.authorMarrie R.A.
dc.contributor.authorMarsh L.
dc.contributor.authorMarx B.P.
dc.contributor.authorMcGuire A.
dc.contributor.authorMohd Sidik S.
dc.contributor.authorMunhoz T.N.
dc.contributor.authorMuramatsu K.
dc.contributor.authorNakku J.E.M.
dc.contributor.authorNavarrete L.
dc.contributor.authorOsório F.L.
dc.contributor.authorPence B.W.
dc.contributor.authorPersoons P.
dc.contributor.authorPetersen I.
dc.contributor.authorPicardi A.
dc.contributor.authorPugh S.L.
dc.contributor.authorQuinn T.J.
dc.contributor.authorRancans E.
dc.contributor.authorRathod S.D.
dc.contributor.authorReuter K.
dc.contributor.authorRooney A.G.
dc.contributor.authorSantos I.S.
dc.contributor.authorSchram M.T.
dc.contributor.correspondenceLevis B.
dc.contributor.otherMahidol University
dc.date.accessioned2024-12-06T18:18:10Z
dc.date.available2024-12-06T18:18:10Z
dc.date.issued2024-11-04
dc.description.abstractImportance: Test accuracy studies often use small datasets to simultaneously select an optimal cutoff score that maximizes test accuracy and generate accuracy estimates. Objective: To evaluate the degree to which using data-driven methods to simultaneously select an optimal Patient Health Questionnaire-9 (PHQ-9) cutoff score and estimate accuracy yields (1) optimal cutoff scores that differ from the population-level optimal cutoff score and (2) biased accuracy estimates. Design, Setting, and Participants: This study used cross-sectional data from an existing individual participant data meta-analysis (IPDMA) database on PHQ-9 screening accuracy to represent a hypothetical population. Studies in the IPDMA database compared participant PHQ-9 scores with a major depression classification. From the IPDMA population, 1000 studies of 100, 200, 500, and 1000 participants each were resampled. Main Outcomes and Measures: For the full IPDMA population and each simulated study, an optimal cutoff score was selected by maximizing the Youden index. Accuracy estimates for optimal cutoff scores in simulated studies were compared with accuracy in the full population. Results: The IPDMA database included 100 primary studies with 44 503 participants (4541 [10%] cases of major depression). The population-level optimal cutoff score was 8 or higher. Optimal cutoff scores in simulated studies ranged from 2 or higher to 21 or higher in samples of 100 participants and 5 or higher to 11 or higher in samples of 1000 participants. The percentage of simulated studies that identified the true optimal cutoff score of 8 or higher was 17% for samples of 100 participants and 33% for samples of 1000 participants. Compared with estimates for a cutoff score of 8 or higher in the population, sensitivity was overestimated by 6.4 (95% CI, 5.7-7.1) percentage points in samples of 100 participants, 4.9 (95% CI, 4.3-5.5) percentage points in samples of 200 participants, 2.2 (95% CI, 1.8-2.6) percentage points in samples of 500 participants, and 1.8 (95% CI, 1.5-2.1) percentage points in samples of 1000 participants. Specificity was within 1 percentage point across sample sizes. Conclusions and Relevance: This study of cross-sectional data found that optimal cutoff scores and accuracy estimates differed substantially from population values when data-driven methods were used to simultaneously identify an optimal cutoff score and estimate accuracy. Users of diagnostic accuracy evidence should evaluate studies of accuracy with caution and ensure that cutoff score recommendations are based on adequately powered research or well-conducted meta-analyses.
dc.identifier.citationJAMA network open Vol.7 No.11 (2024) , e2429630
dc.identifier.doi10.1001/jamanetworkopen.2024.29630
dc.identifier.eissn25743805
dc.identifier.pmid39576645
dc.identifier.scopus2-s2.0-85210463122
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/102280
dc.rights.holderSCOPUS
dc.subjectMedicine
dc.titleData-Driven Cutoff Selection for the Patient Health Questionnaire-9 Depression Screening Tool
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85210463122&origin=inward
oaire.citation.issue11
oaire.citation.titleJAMA network open
oaire.citation.volume7
oairecerif.author.affiliationFaculty of Medicine
oairecerif.author.affiliationFaculty of Medicine and Health Sciences
oairecerif.author.affiliationRamathibodi Hospital
oairecerif.author.affiliationSchool of Medicine
oairecerif.author.affiliationSchool of Medicine and Public Health
oairecerif.author.affiliationCentre for Global Mental Health
oairecerif.author.affiliationBerliner Institut für Gesundheitsforschung
oairecerif.author.affiliationIran University of Medical Sciences, Endocrine Research Center
oairecerif.author.affiliationNYU Shanghai
oairecerif.author.affiliationDuke-NUS Medical School
oairecerif.author.affiliationNiigata Seiryo University
oairecerif.author.affiliationRiga Stradins University
oairecerif.author.affiliationUniversity of Zimbabwe
oairecerif.author.affiliationUniversity of South Florida Health
oairecerif.author.affiliationStanford University School of Medicine
oairecerif.author.affiliationHarvard T.H. Chan School of Public Health
oairecerif.author.affiliationMcMaster University
oairecerif.author.affiliationAmerican College of Radiology, Reston
oairecerif.author.affiliationLondon School of Hygiene & Tropical Medicine
oairecerif.author.affiliationThe University of Queensland
oairecerif.author.affiliationFaculty of Medicine
oairecerif.author.affiliationUniversity of Washington School of Medicine
oairecerif.author.affiliationHospital Universitari Germans Trias i Pujol
oairecerif.author.affiliationThe University of Edinburgh
oairecerif.author.affiliationUniversity of Rochester Medical Center
oairecerif.author.affiliationUniversity of North Texas
oairecerif.author.affiliationUniversity of Technology Sydney
oairecerif.author.affiliationInstitut Lady Davis de Recherches Médicales
oairecerif.author.affiliationNew York University
oairecerif.author.affiliationSamsung Medical Center, Sungkyunkwan university
oairecerif.author.affiliationCollege of Health Sciences
oairecerif.author.affiliationTechnische Universität München
oairecerif.author.affiliationUniversity of Birmingham
oairecerif.author.affiliationMonash University
oairecerif.author.affiliationUniversity of Newcastle, College of Health, Medicine and Wellbeing
oairecerif.author.affiliationUNC Gillings School of Global Public Health
oairecerif.author.affiliationUniversity of York
oairecerif.author.affiliationLeids Universitair Medisch Centrum
oairecerif.author.affiliationUniversity of Pittsburgh
oairecerif.author.affiliationUniversidade Federal de Pelotas
oairecerif.author.affiliationVA Medical Center
oairecerif.author.affiliationUniversity of Waterloo
oairecerif.author.affiliationStanford University
oairecerif.author.affiliationUniversity of Wollongong
oairecerif.author.affiliationKing's College London
oairecerif.author.affiliationQueensland University of Technology
oairecerif.author.affiliationMax Rady College of Medicine, University of Manitoba
oairecerif.author.affiliationIstituto Superiore Di Sanita
oairecerif.author.affiliationUniversity of Manitoba
oairecerif.author.affiliationSingapore Institute of Mental Health
oairecerif.author.affiliationThe Australian National University
oairecerif.author.affiliationShimane University Faculty of Medicine
oairecerif.author.affiliationVrije Universiteit Amsterdam
oairecerif.author.affiliationUniversidade de São Paulo
oairecerif.author.affiliationMaastricht Universitair Medisch Centrum+
oairecerif.author.affiliationThe University of Auckland
oairecerif.author.affiliationDuke University School of Medicine
oairecerif.author.affiliationUniversitätsklinikum Hamburg-Eppendorf
oairecerif.author.affiliationThe George Washington University
oairecerif.author.affiliationChinese University of Hong Kong
oairecerif.author.affiliationBar-Ilan University
oairecerif.author.affiliationUniversité McGill
oairecerif.author.affiliationTan Tock Seng Hospital
oairecerif.author.affiliationBaylor College of Medicine
oairecerif.author.affiliationUniversity of Calgary
oairecerif.author.affiliationUniversiti Kebangsaan Malaysia
oairecerif.author.affiliationInstituto Nacional de Psiquiatría Ramon de la Fuente
oairecerif.author.affiliationCollege of Medical, Veterinary & Life Sciences
oairecerif.author.affiliationUniversidad de Buenos Aires
oairecerif.author.affiliationJohns Hopkins University School of Medicine
oairecerif.author.affiliationCumming School of Medicine
oairecerif.author.affiliationUniversity of Cape Town
oairecerif.author.affiliationHealthcare Group Sint-Kamillus
oairecerif.author.affiliationHospital Mesra Bukit Padang
oairecerif.author.affiliationAnxiety and Resilience Consultants
oairecerif.author.affiliationGroup Practice for Psychotherapy and Psycho-oncology
oairecerif.author.affiliationResearch Department
oairecerif.author.affiliationButabika National Referral Hospital

Files

Collections