Method to measure muon content of extensive air showers with LHAASO KM2A-WCDA synergy
Issued Date
2024-02-01
Resource Type
ISSN
01689002
Scopus ID
2-s2.0-85179007570
Journal Title
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Volume
1059
Rights Holder(s)
SCOPUS
Bibliographic Citation
Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Vol.1059 (2024)
Suggested Citation
Cao Z., Aharonian F., An Q., Axikegu, Bai L.X., Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Cai J.T., Cao Q., Cao W.Y., Cao Z., Chang J., Chang J.F., Chen E.S., Chen L., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S.H., Chen S.Z., Chen T.L., Chen Y., Cheng H.L., Cheng N., Cheng Y.D., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, della Volpe D., Dong X.Q., Duan K.K., Fan J.H., Fan Y.Z., Fang J., Fang K., Feng C.F., Feng L., Feng S.H., Feng X.T., Feng Y.L., Gao B., Gao C.D., Gao L.Q., Gao Q., Gao W., Gao W.K., Ge M.M., Geng L.S., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., He H.H., He H.N., He J.Y., He X.B., He Y., Heller M., Hor Y.K., Hou B.W., Hou C., Hou X., Hu H.B., Hu Q., Hu S.C., Huang D.H., Huang T.Q., Huang W.J., Huang X.T., Huang X.Y., Huang Y., Huang Z.C., Ji X.L., Jia H.Y., Jia K., Jiang K., Jiang X.W., Jiang Z.J., Jin M., Kang M.M., Ke T., Kuleshov D., Kurinov K., Li B.B., Li C., Li C., Li D. Method to measure muon content of extensive air showers with LHAASO KM2A-WCDA synergy. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Vol.1059 (2024). doi:10.1016/j.nima.2023.168958 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/91490
Title
Method to measure muon content of extensive air showers with LHAASO KM2A-WCDA synergy
Author(s)
Cao Z.
Aharonian F.
An Q.
Axikegu
Bai L.X.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng H.L.
Cheng N.
Cheng Y.D.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
della Volpe D.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He J.Y.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Kuleshov D.
Kurinov K.
Li B.B.
Li C.
Li C.
Li D.
Aharonian F.
An Q.
Axikegu
Bai L.X.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng H.L.
Cheng N.
Cheng Y.D.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
della Volpe D.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He J.Y.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Kuleshov D.
Kurinov K.
Li B.B.
Li C.
Li C.
Li D.
Author's Affiliation
State Key Laboratory of Particle Detection & Electronics
Yunnan Observatories
Nanjing University
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Hebei Normal University
Tibet University
Universite de Geneave
TIANFU Cosmic Ray Research Center
Yunnan Observatories
Nanjing University
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Hebei Normal University
Tibet University
Universite de Geneave
TIANFU Cosmic Ray Research Center
Other Contributor(s)
Abstract
The measurement of shower muons on an event-by-event basis offers a potent tool for conducting ground-based experiments on gamma rays and cosmic rays due to its sensitivity to primary mass and interaction models. In recent years, underground water Cherenkov detectors as large-area muon counters provide the most powerful way of rejecting cosmic ray background when searching for TeV–PeV gamma rays and cosmic ray electrons, an unprecedented rejection power of 104–105 is achieved. Unburied water Cherenkov detectors are widely used in ground-based gamma astronomy experiments, e.g, Milagro, HAWC, LHAASO-WCDA, etc. However, due to the presence of electromagnetic components, their deployment as event-by-event muon counters has encountered considerable challenges. All the experiments mentioned above reconstruct lateral-distribution-function related parameters to tell a gamma from hadrons. In this work, we first developed a method to utilize the WCDA, to specify muon content in each shower with LHAASO KM2A-WCDA synergy and help LHAASO to gain approximately a 37,650-meter-square effective area as a muon counter.