Fractional Importance of Various Moisture Sources Influencing Precipitation in Iran Using a Comparative Analysis of Analytical Hierarchy Processes and Machine Learning Techniques

dc.contributor.authorHeydarizad M.
dc.contributor.authorPumijumnong N.
dc.contributor.authorSorí R.
dc.contributor.authorSalari P.
dc.contributor.authorGimeno L.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:07:04Z
dc.date.available2023-06-18T17:07:04Z
dc.date.issued2022-12-01
dc.description.abstractStudying the moisture sources responsible for precipitation in Iran is highly important. In recent years, moisture sources that influence precipitation across Iran have been studied using various methods. In this study, moisture uptake rate from individual sources that influences precipitation across Iran has been determined using the (E − P) values obtained by the FLEXPART model for the 1981–2015 period. Then, moisture uptake rate from individual sources has been used as independent parameters to investigate the fractional importance of moisture sources that influence precipitation in Iran using analytical hierarchy process (AHP) as well as machine learning (ML) methods including artificial neural networks, Decision Tree, Random Forest, Gboost, and XGboost. Furthermore, the average annual precipitation in Iran was simulated using ML methods. The results showed that the Arabian Sea has a dominant fractional influence on precipitation in both wet (November to April) and dry (May to October) periods. Simulation of precipitation amounts using the ML methods presented accurate models during the wet period, whereas the developed models for the dry period were not adequate. Finally, validation of the accuracy of the ML models using RMSE and R2 values showed that the models developed using XGboost had the highest accuracy.
dc.identifier.citationAtmosphere Vol.13 No.12 (2022)
dc.identifier.doi10.3390/atmos13122019
dc.identifier.eissn20734433
dc.identifier.scopus2-s2.0-85144624559
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/84488
dc.rights.holderSCOPUS
dc.subjectEarth and Planetary Sciences
dc.titleFractional Importance of Various Moisture Sources Influencing Precipitation in Iran Using a Comparative Analysis of Analytical Hierarchy Processes and Machine Learning Techniques
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85144624559&origin=inward
oaire.citation.issue12
oaire.citation.titleAtmosphere
oaire.citation.volume13
oairecerif.author.affiliationFaculty of Environment and Resource Studies, Mahidol University
oairecerif.author.affiliationUniversidade de Vigo
oairecerif.author.affiliationFerdowsi University of Mashhad

Files

Collections