Long-short term traffic prediction under road incidents using deep learning networks

dc.contributor.authorWiwatanapataphee B.
dc.contributor.authorKhajohnsaksumeth N.
dc.contributor.authorWu Y.H.
dc.contributor.authorJacoby G.
dc.contributor.authorZhang X.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:03:43Z
dc.date.available2023-06-18T17:03:43Z
dc.date.issued2022-01-01
dc.description.abstractThis paper investigates the effectiveness of multi-variate deep learning models for traffic flow prediction with road incidents. Multiple features of the data are considered in the analysis including traffic features, road incident features and cyclical features. Three multivariate deep learning models based on the stacked LSTM network, the CNN LSTM network, and the Autoencoders-LSTM network are developed for long-short term traffic forecasting under road incidents. The results obtained from the analysis are then compared to determine the best suitable approach.
dc.identifier.citation2022 8th International Conference on Control, Decision and Information Technologies, CoDIT 2022 (2022) , 500-505
dc.identifier.doi10.1109/CoDIT55151.2022.9803895
dc.identifier.scopus2-s2.0-85134349676
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/84387
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titleLong-short term traffic prediction under road incidents using deep learning networks
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85134349676&origin=inward
oaire.citation.endPage505
oaire.citation.startPage500
oaire.citation.title2022 8th International Conference on Control, Decision and Information Technologies, CoDIT 2022
oairecerif.author.affiliationCurtin University
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationMHESI
oairecerif.author.affiliationMain Roads Western Australia

Files

Collections