Optimising inter-patient image registration for image-based data mining in breast radiotherapy

dc.contributor.authorJaikuna T.
dc.contributor.authorWilson F.
dc.contributor.authorAzria D.
dc.contributor.authorChang-Claude J.
dc.contributor.authorDe Santis M.C.
dc.contributor.authorGutiérrez-Enríquez S.
dc.contributor.authorvan Herk M.
dc.contributor.authorHoskin P.
dc.contributor.authorKotzki L.
dc.contributor.authorLambrecht M.
dc.contributor.authorLingard Z.
dc.contributor.authorSeibold P.
dc.contributor.authorSeoane A.
dc.contributor.authorSperk E.
dc.contributor.authorPaul Symonds R.
dc.contributor.authorTalbot C.J.
dc.contributor.authorRancati T.
dc.contributor.authorRattay T.
dc.contributor.authorReyes V.
dc.contributor.authorRosenstein B.S.
dc.contributor.authorde Ruysscher D.
dc.contributor.authorVega A.
dc.contributor.authorVeldeman L.
dc.contributor.authorWebb A.
dc.contributor.authorWest C.M.
dc.contributor.authorAznar M.C.
dc.contributor.authorVasquez Osorio E.
dc.contributor.correspondenceJaikuna T.
dc.contributor.otherMahidol University
dc.date.accessioned2024-09-15T18:31:09Z
dc.date.available2024-09-15T18:31:09Z
dc.date.issued2024-10-01
dc.description.abstractBackground and purpose: Image-based data mining (IBDM) requires spatial normalisation to reference anatomy, which is challenging in breast radiotherapy due to variations in the treatment position, breast shape and volume. We aim to optimise spatial normalisation for breast IBDM. Materials and methods: Data from 996 patients treated with radiotherapy for early-stage breast cancer, recruited in the REQUITE study, were included. Patients were treated supine (n = 811), with either bilateral or ipsilateral arm(s) raised (551/260, respectively) or in prone position (n = 185). Four deformable image registration (DIR) configurations for extrathoracic spatial normalisation were tested. We selected the best-performing DIR configuration and further investigated two pathways: i) registering prone/supine cohorts independently and ii) registering all patients to a supine reference. The impact of arm positioning in the supine cohort was quantified. DIR accuracy was estimated using Normalised Cross Correlation (NCC), Dice Similarity Coefficient (DSC), mean Distance to Agreement (MDA), 95 % Hausdorff Distance (95 %HD), and inter-patient landmark registration uncertainty (ILRU). Results: DIR using B-spline and normalised mutual information (NMI) performed the best across all evaluation metrics. Supine-supine registrations yielded highest accuracy (0.98 ± 0.01, 0.91 ± 0.04, 0.23 ± 0.19 cm, 1.17 ± 1.18 cm, 0.51 ± 0.26 cm for NCC, DSC, MDA, 95 %HD, and ILRU), followed by prone-prone and supine-prone registrations. Arm positioning had no significant impact on registration performance. For the best DIR strategy, uncertainty of 0.44 and 0.81 cm in the breast and shoulder regions was found. Conclusions: B-spline algorithm using NMI and registered supine and prone cohorts independently provides the most optimal spatial normalisation strategy for breast IBDM.
dc.identifier.citationPhysics and Imaging in Radiation Oncology Vol.32 (2024)
dc.identifier.doi10.1016/j.phro.2024.100635
dc.identifier.eissn24056316
dc.identifier.scopus2-s2.0-85203409326
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/101218
dc.rights.holderSCOPUS
dc.subjectMedicine
dc.subjectPhysics and Astronomy
dc.subjectPhysics and Astronomy
dc.titleOptimising inter-patient image registration for image-based data mining in breast radiotherapy
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85203409326&origin=inward
oaire.citation.titlePhysics and Imaging in Radiation Oncology
oaire.citation.volume32
oairecerif.author.affiliationInstituto de Investigación Sanitaria de Santiago de Compostela
oairecerif.author.affiliationMedizinische Fakultät Mannheim
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationCollege of Life Sciences
oairecerif.author.affiliationVall d‘Hebron Institut de Oncologia
oairecerif.author.affiliationInstitut de Recherche en Cancérologie de Montpellier
oairecerif.author.affiliationCentro de Investigación Biomédica en Red de Enfermedades Raras
oairecerif.author.affiliationUniversitair Ziekenhuis Gent
oairecerif.author.affiliationUniversity of Leicester
oairecerif.author.affiliationKU Leuven
oairecerif.author.affiliationGerman Cancer Research Center
oairecerif.author.affiliationSchool of Medical Sciences
oairecerif.author.affiliationHôpital Universitaire Carémeau
oairecerif.author.affiliationIcahn School of Medicine at Mount Sinai
oairecerif.author.affiliationHospital Universitari Vall d'Hebron
oairecerif.author.affiliationMaastricht Universitair Medisch Centrum+
oairecerif.author.affiliationFondazione IRCCS Istituto Nazionale dei Tumori, Milan
oairecerif.author.affiliationUniversitätsklinikum Hamburg-Eppendorf
oairecerif.author.affiliationFondazione IRCCS Isituto Nazionale dei Tumori
oairecerif.author.affiliationGrupo de Medicina Xenómica (USC)

Files

Collections