Optimising inter-patient image registration for image-based data mining in breast radiotherapy
dc.contributor.author | Jaikuna T. | |
dc.contributor.author | Wilson F. | |
dc.contributor.author | Azria D. | |
dc.contributor.author | Chang-Claude J. | |
dc.contributor.author | De Santis M.C. | |
dc.contributor.author | Gutiérrez-Enríquez S. | |
dc.contributor.author | van Herk M. | |
dc.contributor.author | Hoskin P. | |
dc.contributor.author | Kotzki L. | |
dc.contributor.author | Lambrecht M. | |
dc.contributor.author | Lingard Z. | |
dc.contributor.author | Seibold P. | |
dc.contributor.author | Seoane A. | |
dc.contributor.author | Sperk E. | |
dc.contributor.author | Paul Symonds R. | |
dc.contributor.author | Talbot C.J. | |
dc.contributor.author | Rancati T. | |
dc.contributor.author | Rattay T. | |
dc.contributor.author | Reyes V. | |
dc.contributor.author | Rosenstein B.S. | |
dc.contributor.author | de Ruysscher D. | |
dc.contributor.author | Vega A. | |
dc.contributor.author | Veldeman L. | |
dc.contributor.author | Webb A. | |
dc.contributor.author | West C.M. | |
dc.contributor.author | Aznar M.C. | |
dc.contributor.author | Vasquez Osorio E. | |
dc.contributor.correspondence | Jaikuna T. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2024-09-15T18:31:09Z | |
dc.date.available | 2024-09-15T18:31:09Z | |
dc.date.issued | 2024-10-01 | |
dc.description.abstract | Background and purpose: Image-based data mining (IBDM) requires spatial normalisation to reference anatomy, which is challenging in breast radiotherapy due to variations in the treatment position, breast shape and volume. We aim to optimise spatial normalisation for breast IBDM. Materials and methods: Data from 996 patients treated with radiotherapy for early-stage breast cancer, recruited in the REQUITE study, were included. Patients were treated supine (n = 811), with either bilateral or ipsilateral arm(s) raised (551/260, respectively) or in prone position (n = 185). Four deformable image registration (DIR) configurations for extrathoracic spatial normalisation were tested. We selected the best-performing DIR configuration and further investigated two pathways: i) registering prone/supine cohorts independently and ii) registering all patients to a supine reference. The impact of arm positioning in the supine cohort was quantified. DIR accuracy was estimated using Normalised Cross Correlation (NCC), Dice Similarity Coefficient (DSC), mean Distance to Agreement (MDA), 95 % Hausdorff Distance (95 %HD), and inter-patient landmark registration uncertainty (ILRU). Results: DIR using B-spline and normalised mutual information (NMI) performed the best across all evaluation metrics. Supine-supine registrations yielded highest accuracy (0.98 ± 0.01, 0.91 ± 0.04, 0.23 ± 0.19 cm, 1.17 ± 1.18 cm, 0.51 ± 0.26 cm for NCC, DSC, MDA, 95 %HD, and ILRU), followed by prone-prone and supine-prone registrations. Arm positioning had no significant impact on registration performance. For the best DIR strategy, uncertainty of 0.44 and 0.81 cm in the breast and shoulder regions was found. Conclusions: B-spline algorithm using NMI and registered supine and prone cohorts independently provides the most optimal spatial normalisation strategy for breast IBDM. | |
dc.identifier.citation | Physics and Imaging in Radiation Oncology Vol.32 (2024) | |
dc.identifier.doi | 10.1016/j.phro.2024.100635 | |
dc.identifier.eissn | 24056316 | |
dc.identifier.scopus | 2-s2.0-85203409326 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/101218 | |
dc.rights.holder | SCOPUS | |
dc.subject | Medicine | |
dc.subject | Physics and Astronomy | |
dc.subject | Physics and Astronomy | |
dc.title | Optimising inter-patient image registration for image-based data mining in breast radiotherapy | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85203409326&origin=inward | |
oaire.citation.title | Physics and Imaging in Radiation Oncology | |
oaire.citation.volume | 32 | |
oairecerif.author.affiliation | Instituto de Investigación Sanitaria de Santiago de Compostela | |
oairecerif.author.affiliation | Medizinische Fakultät Mannheim | |
oairecerif.author.affiliation | Siriraj Hospital | |
oairecerif.author.affiliation | College of Life Sciences | |
oairecerif.author.affiliation | Vall d‘Hebron Institut de Oncologia | |
oairecerif.author.affiliation | Institut de Recherche en Cancérologie de Montpellier | |
oairecerif.author.affiliation | Centro de Investigación Biomédica en Red de Enfermedades Raras | |
oairecerif.author.affiliation | Universitair Ziekenhuis Gent | |
oairecerif.author.affiliation | University of Leicester | |
oairecerif.author.affiliation | KU Leuven | |
oairecerif.author.affiliation | German Cancer Research Center | |
oairecerif.author.affiliation | School of Medical Sciences | |
oairecerif.author.affiliation | Hôpital Universitaire Carémeau | |
oairecerif.author.affiliation | Icahn School of Medicine at Mount Sinai | |
oairecerif.author.affiliation | Hospital Universitari Vall d'Hebron | |
oairecerif.author.affiliation | Maastricht Universitair Medisch Centrum+ | |
oairecerif.author.affiliation | Fondazione IRCCS Istituto Nazionale dei Tumori, Milan | |
oairecerif.author.affiliation | Universitätsklinikum Hamburg-Eppendorf | |
oairecerif.author.affiliation | Fondazione IRCCS Isituto Nazionale dei Tumori | |
oairecerif.author.affiliation | Grupo de Medicina Xenómica (USC) |